Massless spectra of three generation $\mathrm{U}(N)$ heterotic string vacua

Ralph Blumenhagen and Sebastian Moster

Max-Planck-Institut für Physik
Föhringer Ring 6, 80805 München, Germany
E-mail: blumenha@mppmu.mpg.de, moster@mppmu.mpg.de

René Reinbacher

Department of Physics and Astronomy, Rutgers University
Piscataway, NJ 08855-0849, U.S.A.
E-mail: rreinb@physics.rutgers.edu

Timo Weigand

Department of Physics and Astronomy, University of Pennsylvania
Philadelphia, PA 19104-6396, U.S.A.
E-mail: timo@sas.upenn.edu

Abstract: We provide the methods to compute the complete massless spectra of a class of recently introduced supersymmetric $E_{8} \times E_{8}$ heterotic string models which invoke vector bundles with $\mathrm{U}(N)$ structure group on simply connected Calabi-Yau manifolds and which yield flipped $\mathrm{SU}(5)$ and MSSM string vacua of potential phenomenological interest. We apply Leray spectral sequences in order to derive the localisation of the cohomology groups $H^{i}\left(X, V_{a} \otimes V_{b}\right), H^{i}\left(X, \bigwedge^{2} V\right)$ and $H^{i}\left(X, \mathbf{S}^{2} V\right)$ for vector bundles defined via Fourier-Mukai transforms on elliptically fibered Calabi-Yau manifolds. By the method of bundle extensions we define a stable $\mathrm{U}(4)$ vector bundle leading to the first flipped $\mathrm{SU}(5)$ model with just three generations, i.e. without any vector-like matter. Along the way, we propose the notion of λ-stability for heterotic bundles.

Keywords: Superstring Vacua, Superstrings and Heterotic Strings.

Contents

11. Introduction 1
12. Stable $\mathrm{U}(n)$ bundles via spectral covers 7
2.1 Elliptically fibered Calabi-Yau manifolds E
2.2 The spectral cover construction 6
2.3 Del Pezzo surfaces 9
2.4 More bundles from extensions 11
2.5 Comments on μ - and Λ-stability 11
13. Computation of cohomology classes 14
3.1 Cohomology classes $H^{i}(X, \mathcal{L})$ 15
3.2 Cohomology classes $H^{i}\left(X, V_{a} \otimes V_{b}\right)$ 16
3.3 Cohomology classes $H^{i}\left(X, \bigwedge^{2} V\right)$ and $H^{i}\left(X, \mathbf{S}^{2} V\right)$ 20
14. Heterotic flipped $\mathrm{SU}(5)$ GUT models 24
$4.1 \quad \mathrm{SU}(4) \times \mathrm{U}(1)$ bundles 24
4.2 A three-generation model from extensions 27
15. Conclusions 32
A. Proof of stability for rank four bundles V by two generic rank two bun- dles V_{1}, V_{2} 34
B. Cohomology of line bundles over del-Pezzo surfaces 36
G. Koszul sequence for $H^{*}\left(X, V_{a} \otimes V_{b}\right)$ 38

1. Introduction

Since its discovery in 1985 the heterotic string (1] has been considered as a promising candidate to yield four-dimensional string vacua whose low-energy effective action resemble the Standard Model (SM) of particle physics or an extension thereof. Different constructions, based on the subsequent discovery of D-branes, such as intersecting D-brane models provide an alternative way to realize many of the Standard Model properties in concrete four-dimensional string vacua. ${ }^{1}$ Whereas these latter constructions are well-suited to directly yield the Standard Model gauge symmetry at the string scale, for GUT-like theories the $E_{8} \times E_{8}$ heterotic string seems to be particularly natural.

[^0]In the last couple of years there has been a revival of attempts to construct realistic $E_{8} \times E_{8}$ string vacua on Calabi-Yau manifolds. In fact using advanced techniques for the construction of vector bundles, models have been found with the MSSM massless charged particle spectrum. Some of them are completely supersymmetric [4] , 5] whereas others include an explicit supersymmetry breaking hidden E_{8} or M-theoretic bulk sector [6, (7].

The philosophy of these constructions, pioneered in [8], is to embed an $\operatorname{SU}(4)$ or $\operatorname{SU}(5)$ bundle into one E_{8} which first gives rise to an $\mathrm{SO}(10)$ and $\mathrm{SU}(5)$ observable GUT model, respectively. Due to the absence of candidate GUT Higgs fields, this gauge symmetry has to be broken by discrete Wilson lines. In fact, most of the effort has gone into the investigation of Calabi-Yau manifolds admitting non-trivial discrete Wilson lines and the construction of appropriate equivariant vector bundles [9-11].

Based on the methods developed in [12, 13], an alternative to this procedure has recently been presented in [14]. There it is shown that by allowing also vector bundles with $\mathrm{U}(N)$ structure groups, the massless spectrum can contain GUT Higgs scalars. This approach therefore circumvents the necessity of working on manifolds with non-trivial fundamental group and opens up the way for heterotic model building on much more general background manifolds. In particular, the technology for the construction of stable vector bundles on elliptically fibered Calabi-Yau manifolds 15-17 can directly be employed.

Concretely, the approach of (14 provides two alternative strategies. The first option consists of embedding a vector bundle with structure group $\mathrm{SU}(4) \times \mathrm{U}(1)$ into the first E_{8}. This engineers the observable gauge symmetry $\mathrm{SU}(5) \times \mathrm{U}(1)$. Under the $\mathrm{U}(1)$ the prospective $S M$ particles carry exactly the charge known from $\mathrm{U}(1)_{X}$ in the flipped $\mathrm{SU}(5)$ GUT scenario [18, [19]. However, without further refinements the $\mathrm{U}(1)$ becomes massive due to the Green-Schwarz mechanism. To remedy this one can embed in addition a line bundle into the second E_{8} factor yielding an observable $E_{7} \times \mathrm{U}(1)$ gauge symmetry. Under certain conditions on the vector bundles one linear combination of the two $\mathrm{U}(1)$ factors from the first and the second E_{8} remains massless, eventually giving rise to a supersymmetric flipped $\operatorname{SU}(5)$ GUT model. The role of the GUT Higgs pair is played by the component in the $[\mathbf{1 0} \mathbf{-} \overline{\mathbf{1 0}}]$ neutral under the SM gauge group. One physical motivation to study the resulting models are the known phenomenologically attractive field-theoretic features of the flipped $\operatorname{SU}(5)$ scenario [20, 21]..2 These include a high degree of proton stability, among others due to a natural solution to the doublet-triplet splitting problem, and distinguish the flipped from the non-flipped $\mathrm{SU}(5)$ models. Whereas in the purely field-theoretic flipped $\mathrm{SU}(5)$ model the GUT scale value of the $\mathrm{U}(1)_{X}$ gauge coupling is in principle a free parameter, in the stringy flipped $\operatorname{SU}(5)$ of (14] the three tree-level gauge couplings are uniquely determined and do not unify at the string or GUT scale. Nonetheless gauge coupling unification can in principle be achieved by a suitable tuning of the stringy threshold corrections. Moreover, there appear, in general, exotic massless states, which turn out to be all vector-like as soon as one requires that the $\mathrm{U}(1)_{X}$ stays massless. It is important to note that the presence of these exotics is by no means a definite prediction of this string theoretic realisation of flipped $\operatorname{SU}(5)$ since they can well be avoided by a suitable choice

[^1]of bundle data. In fact, it is the main result of the present paper to exemplify that this is indeed possible.

The second option studied in [14] is to embed an $\mathrm{SU}(5) \times \mathrm{U}(1)$ bundle into one E_{8} and a second line bundle into the other E_{8}. This yields string vacua with just the Standard Model gauge symmetry and, again, only very few non-chiral exotic matter states, which may or may not be present depending on the details of the compactification data. In [14], it was also carried out a successful computer search for chiral three-generation flipped $\operatorname{SU}(5)$ and direct MSSM models on elliptically fibered Calabi-Yau manifolds, where the base was allowed to be either a Hirzebruch surface or a del Pezzo surface with $r \leq 4$.

The final aim of this paper is to continue the model search of [14] and to demonstrate the existence of string vacua of the two types described above and with as little vectorlike exotic matter as possible. These could then serve as the starting point for concrete phenomenological studies. Technically, our models will be based on the extension of spectral cover bundles with structure group $\mathrm{U}(N)$ on elliptically fibered Calabi-Yau manifolds, as pioneered in [15-17]. The computation of the vector-like matter spectrum of these $\mathrm{U}(N)$ bundles requires some technology from algebraic geometry which may be slightly beyond the everyday needs in the physics literature. Before addressing the construction of string vacua of the above type in section 4 , we therefore have to spend some time diving into the details of the spectral cover construction. In particular, it will be necessary to generalise the methods developed in [27.

For self-consistency of this paper we will begin section 2 by reviewing the construction of μ-stable bundles over elliptically fibered Calabi-Yau manifolds via the method of spectral covers. We will also explain the method of bundle extensions, which allows one to construct stable bundles of higher from lower rank ones. We then propose a new notion of stability, which should be relevant for vector bundles for heterotic strings and which includes, similarly to Π-stability for D-branes, higher perturbative and non-perturbative corrections. We call bundles which are stable in this sense Λ-stable. Finally, we recall the criterion stated in [28] for stability of extensions of spectral cover bundles and prove it in appendix A.

In section 3 we will partly review and partly newly derive the main technical tools for the computation of the various cohomology groups relevant for determining the massless modes for the string compactifications of interest. By applying the Leray spectral sequence, we will first recall that the cohomology of line bundles over the Calabi-Yau manifold can be computed from line bundles over the base manifold of the elliptic fibration. Moreover, we will explicitly show that the cohomology of the tensor product of two $\mathrm{U}(N)$ bundles localises on the intersection curve of the two spectral covers and can be determined by computing solely the cohomology of a certain line bundle over this support curve. This is in agreement with the special case considered in [27] that one of the bundles is a trivial line. Therefore, eventually the entire computation is transformed into computing the cohomology of line bundles over curves given by complete intersections of two surfaces. These can be evaluated using Koszul sequences. With these results available we move forward and newly compute the cohomologies of the bundles $\bigwedge^{2} V$ and $\mathbf{S}^{2} V$. Note that the formula we derive differs from the one found in 27.

Equipped with these powerful mathematical results, in section 4 we address the construction of flipped $\operatorname{SU}(5)$ heterotic string vacua by using vector bundles with structure group $\mathrm{SU}(4) \times \mathrm{U}(1)$. After recalling the main ingredients of [14] we provide a new globally consistent supersymmetric three generation example, for which the $\mathrm{U}(4)$ bundle is defined as a stable extension of two $\mathrm{U}(2)$ bundles. The model exhibits precisely one pair of GUT Higgs fields as required for GUT breaking down to the MSSM gauge group. The particle spectrum of the resulting $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_{Y}$ vacuum is precisely that of the supersymmetric Standard Model spectrum with no extra vector-like matter but a number of additional electro-weak Higgs pairs. To the best of our knowledge, this is the first consistent flipped $\mathrm{SU}(5)$ string model with these properties in the literature.

2. Stable $\mathrm{U}(n)$ bundles via spectral covers

In sections 2.1 2.3 we review the construction of μ-stable $\mathrm{U}(n)$ vector bundles over elliptically fibered Calabi-Yau manifolds via the spectral cover method [15, 17, 16]. More information can also be found e.g. in [29]. We then recall in section 2.4 the definition of vector bundles as non-trivial extensions of such spectral cover bundles. These parts are meant as a pedagogical introduction to this topic in order to make the present article accessible to the non-expert reader and may safely be skipped by specialists. Section 2.5 analyses the stability concept appropriate for our applications, relegating a proof of the stability of our bundles to the appendix A.

2.1 Elliptically fibered Calabi-Yau manifolds

An elliptically fibered complex threefold X is given by a complex two-surface B, the base space, together with an analytic map

$$
\begin{equation*}
\pi: X \rightarrow B, \tag{2.1}
\end{equation*}
$$

where fibers over each point b in the base

$$
\begin{equation*}
E_{b}=\pi^{-1}(b) \tag{2.2}
\end{equation*}
$$

are elliptic curves. Recall that an elliptic curve is a two-torus with a complex structure inducing an abelian group law. In particular it contains a distinguished point p acting as the zero element in this group.

We require the fibration X to admit a global section $\sigma: B \rightarrow X$, assigning to every point in the base $b \in B$ the zero element $\sigma(b)=p \in E_{b}$ on the fiber. This section embeds the base as a sub-manifold into X and we will often not distinguish between B as a complex two-fold and σ as its image in X. The associated homology class in $H_{4}(X, \mathbb{Z})$ then intersects the fibre class precisely once. It will be useful to introduce also the class in $H^{2}(X, \mathbb{Z})$ Poincaré dual to the class of σ. In slight abuse of notation, it will also be referred to as σ. The respective meaning will hopefully always be clear from the context. Its cohomological self-intersection can be proven to be 15

$$
\begin{equation*}
\sigma \cdot \sigma=-\sigma \cdot \pi^{*} c_{1}(B) . \tag{2.3}
\end{equation*}
$$

Likewise, we introduce $F \in H^{4}(X, \mathbb{Z})$ as the Poincaré dual to the fibre class. The fact that the base class intersects the class of the generic fibre once is reflected in the cohomological intersection form

$$
\begin{equation*}
\sigma \cdot F=1 \tag{2.4}
\end{equation*}
$$

This shows that F is actually the Hodge dual to the two-form σ. Now that we are at it, we state for later purposes the simple fact that the intersection form of the pull-back to X of two classes α and β in $H^{2}(B, \mathbb{Z})$ is given by the pull-back of the intersection on B,

$$
\begin{equation*}
\pi^{*}(\alpha) \cdot \pi^{*}(\beta)=\pi^{*}(\alpha \cdot \beta)=(\alpha \cdot \beta) F \tag{2.5}
\end{equation*}
$$

Let us now turn our attention to the elliptic fibre. Elliptic curves can be described as the hyperplane in $\mathbb{C P}^{2}$ defined by the homogeneous Weierstrass equation

$$
\begin{equation*}
z y^{2}=4 x^{3}-g_{2} x z^{2}-g_{3} z^{3} \tag{2.6}
\end{equation*}
$$

where x, y, z are homogeneous coordinates on $\mathbb{C P}^{2}$ and g_{2} and g_{3} define the complex structure. When we define a family of elliptic curves over the base, x, y, z and g_{2} and g_{3} must be promoted to global sections of certain powers of some line bundle \mathcal{L} on B. The choice of this line bundle and the global sections x, y, z will define the fibration.

In order to promote equation (2.6) to a vanishing condition of a global section of a line bundle on B, we choose x, y, z to be sections of $\mathcal{L}^{2}, \mathcal{L}^{3}$ and \mathcal{O} whereas g_{2} and g_{3} appear as sections of \mathcal{L}^{4} and \mathcal{L}^{6}, respectively. If the fibration X is to be Calabi-Yau, the first Chern class of the tangent bundle T must vanish,

$$
\begin{equation*}
c_{1}(X)=0 \tag{2.7}
\end{equation*}
$$

As shown e.g. in 29, this implies $\mathcal{L}=K_{B}^{-1}$, where K_{B} is the canonical bundle of the base space. It follows that K_{B}^{-4} and K_{B}^{-6} must have sections g_{2} and g_{3}, respectively. The surfaces compatible with this condition are found to be del Pezzo, Hirzebruch, Enriques and blow-ups of Hirzebruch surfaces [30]. Note, however, that the construction of stable holomorphic bundles on elliptically fibered three-folds does not hinge upon the Calabi-Yau property. In order to simplify the mathematical apparatus, we nonetheless assume (2.7) in the sequel.

Friedman-Morgen-Witten (FMW) showed that on such spaces the Chern classes of the tangent bundle of the total space follow from the Chern classes of the base space. In particular, the second Chern class of the tangent bundle can be computed as

$$
\begin{equation*}
c_{2}(X)=12 \sigma \cdot \pi^{*} c_{1}(B)+\left(11 c_{1}(B)^{2}+c_{2}(B)\right) F \tag{2.8}
\end{equation*}
$$

For later purposes let us recall that on X there exists a holomorphic involution τ acting solely on the fiber as $\tau: y \rightarrow-y$. The fixed point locus of τ consists of two components. The first component is given by $x=z=0$ and arbitrary y, which is nothing else than the section σ. The second component is defined by $y=0$ and is therefore a triple cover of
B, whose homology class was derived in 15 as $3 \sigma+3 c_{1}(B)$. The homology class of the complete fixed point surface is therefore

$$
\begin{equation*}
\sigma_{\tau}=4 \sigma+3 c_{1}(B) \tag{2.9}
\end{equation*}
$$

where the factor 4σ reflects the four fixed points of the holomorphic involution (-1) on T^{2}.

2.2 The spectral cover construction

The basic idea of the spectral cover method is to first construct a μ-stable $\mathrm{U}(n)$ or $\mathrm{SU}(n)$ bundle on the elliptic fibre over each point of the base, which is then extended over the whole manifold by gluing the data together suitably. Recall that in general, a $\mathrm{U}(n)$ or $\mathrm{SU}(n)$ bundle defines a rank n complex vector bundle. Such a rank n bundle over an elliptic curve must, in order to satisfy the Hermitian Yang-Mills equation, be of degree zero. More precisely, it can be shown to be isomorphic to the direct sum of n complex line bundles

$$
\begin{equation*}
\left.\mathcal{V}\right|_{E_{b}}=\mathcal{N}_{1} \oplus \ldots \oplus \mathcal{N}_{n} \tag{2.10}
\end{equation*}
$$

each of which has to be of zero degree. If $G=\mathrm{SU}(n)$ as opposed to $\mathrm{U}(n),\left.\mathcal{V}\right|_{E_{b}}$ must in addition be of trivial determinant, i.e. $\bigotimes_{i=1}^{n} \mathcal{N}_{i}=\mathcal{O}_{E_{b}}$. The zero degree condition on \mathcal{N}_{i} implies that there exists for each \mathcal{N}_{i} a meromorphic section with precisely one zero at some Q_{i} and a pole at p, i.e. $\mathcal{N}_{i}=\mathcal{O}_{E_{b}}\left(Q_{i}-p\right)$. Consequently, stable $(S) \mathrm{U}(n)$ bundles on an elliptic curve are in one-to-one correspondence with the unordered n-tuple of points Q_{i}, and the reduction of $\mathrm{U}(N)$ to $\mathrm{SU}(n)$ is encoded in the additional requirement that $\sum_{i}\left(Q_{i}-p\right)=0$ in the group law of the elliptic curve.

Having understood the restriction of a rank n bundle \mathcal{V} to each elliptic fibre, we can now proceed to constructing the whole of \mathcal{V}. In intuitive terms, the above implies that over an elliptically fibered manifold a $\mathrm{U}(n)$ vector bundle determines a set of n points, varying over the base. More precisely, the bundle \mathcal{V} over X with the property that for a generic fiber E_{b}

$$
\begin{equation*}
\left.\mathcal{V}\right|_{E_{b}}=\bigoplus_{i=1}^{n} \mathcal{O}\left(Q_{i}-p\right) \tag{2.11}
\end{equation*}
$$

uniquely defines an n-fold cover C of B, the spectral cover. It is defined by a projection

$$
\begin{equation*}
\pi_{C}: C \rightarrow B \quad \text { and } \quad C \cap E_{b}=\pi_{C}^{-1}(b)=\bigcup_{i} Q_{i} \tag{2.12}
\end{equation*}
$$

C, which is a hypersurface in X, can be conveniently described as the vanishing locus of some global section of the line bundle $\mathcal{O}_{X}\left(n \sigma+\pi^{*} \eta\right)$. Here η denotes some effective class in $H^{2}(B, \mathbb{Z})$. In particular, this implies that the Poincaré dual two-form of C is in

$$
\begin{equation*}
[C]=n \sigma+\pi^{*} \eta \in H^{2}(X, \mathbb{Z}) \tag{2.13}
\end{equation*}
$$

Note that under the involution τ the class $[C]$ is invariant, while the spectral cover C is in general not invariant.

Several distinct bundles over X may well give rise to the same spectral cover C since the latter only encodes the information about the restriction of \mathcal{V} to the fibre E_{b}. To recover \mathcal{V} from the spectral data we need to specify in addition how it varies over the base, i.e. $\left.\mathcal{V}\right|_{B}$. As discussed in 15 this is uniquely accomplished by the so-called spectral line bundle \mathcal{N} on C with the property

$$
\begin{equation*}
\pi_{C *} \mathcal{N}=\left.\mathcal{V}\right|_{B} \tag{2.14}
\end{equation*}
$$

We can formalise these results by introducing the notion of the Poincaré line bundle \mathcal{P}. For this purpose, consider the fibre product $X \times_{B} X^{\prime}$ as the set of pairs $\left(z_{1}, z_{2}\right) \in X \times X^{\prime}$ with $\pi\left(z_{1}\right)=\pi\left(z_{2}\right)$. Furthermore we need to introduce π_{1} and π_{2} as the projections on the first and second factor, respectively. Moreover, σ_{1} denotes the section $\sigma_{1}: B \rightarrow X \rightarrow X \times{ }_{B} X^{\prime}$ and σ_{2} the section $\sigma_{2}: B \rightarrow X^{\prime} \rightarrow X \times_{B} X^{\prime}$. Then \mathcal{P} is defined as the bundle over $X \times_{B} X^{\prime}$ with the two properties

$$
\begin{equation*}
\left.\left.\mathcal{P}\right|_{E_{b} \times x} \simeq \mathcal{P}\right|_{x \times E_{b}} \simeq \mathcal{O}_{E_{b}}(x-p),\left.\quad \mathcal{P}\right|_{\sigma_{i}}=\mathcal{O}_{\sigma_{i}}, i=1,2 \tag{2.15}
\end{equation*}
$$

Introducing the diagonal divisor Δ, the first Chern class of the Poincaré line bundle is

$$
\begin{equation*}
c_{1}(\mathcal{P})=\Delta-\sigma_{1}-\sigma_{2}-c_{1}(B) \tag{2.16}
\end{equation*}
$$

Note that Δ satisfies the relations

$$
\begin{equation*}
\Delta^{2}=-\Delta \cdot c_{1}(B), \quad \Delta \cdot \sigma_{i}=\sigma_{1} \cdot \sigma_{2} \tag{2.17}
\end{equation*}
$$

We will denote by \mathcal{P}_{B} the restriction of \mathcal{P} to $X \times_{B} C$. Now by definition, $\left.\pi_{1 *}\left(\mathcal{P}_{B}\right)\right|_{x}=$ $\bigoplus_{i} \mathcal{O}_{E_{\pi(x)}}\left(Q_{i}-p\right)$, as is clear from the fact that $C \cap E_{b}=\bigcup_{i} Q_{i}$ and the first property in (2.15). This remains true if we tensor \mathcal{P}_{B} with $\pi_{2}^{*}(\mathcal{N})$ for some line bundle \mathcal{N} on C. After all, $\pi_{2}^{*}(\mathcal{N})$ as a bundle on X is trivial when restricted to the fibre E_{b}. On the other hand, $\left.\mathcal{P}\right|_{\sigma \times_{B} X^{\prime}}$ is likewise trivial due to the second property in (2.15), and so $\left.\left.\left(\pi_{1 *}\left(\pi_{2}^{*} \mathcal{N} \otimes \mathcal{P}_{\mathcal{B}}\right)\right)\right|_{B}=\left.\pi_{1 *}\left(\pi_{2}^{*} \mathcal{N} \otimes \mathcal{P}_{\mathcal{B}}\right)\right|_{\sigma_{2}}\right)$ is simply given by $\pi_{C *} \mathcal{N}$. In other words, the bundle

$$
\begin{equation*}
\mathcal{V}=\pi_{1 *}\left(\pi_{2}^{*} \mathcal{N} \otimes \mathcal{P}_{B}\right) \tag{2.18}
\end{equation*}
$$

indeed exhibits the two defining properties (2.11) and (2.14). This establishes the definition of an $(S) \mathrm{U}(n)$ bundle on the elliptically fibered Calabi-Yau threefold in terms of the spectral data (C, \mathcal{N}). We reiterate that we will only consider the case that the restriction of the bundle to the elliptic fibre is an $\mathrm{SU}(n)$ bundle, i.e. that C is as in (2.13).

The bundles constructed so far are μ-semi-stable on a generic elliptic fiber. It has been shown in [17, Theorem 7.1, that an irreducible spectral cover is a sufficient condition in order to obtain a μ-stable vector bundle. ${ }^{3}$ There are two simple conditions on the curve η [27] which ensure the existence of an irreducible spectral cover:

[^2]- The linear system $|\eta|$ is base-point free.
- The class $\eta-n c_{1}(B)$ is effective.

We will be more specific about their implications when it comes to a discussion of the properties of the base.

We now give the topological invariants of the bundle \mathcal{V} defined by (2.18). The working horse for this computation is the Grothendieck-Riemann-Roch (GRR) theorem. Applying this theorem to the projection $\pi_{1}: X \times_{B} C \rightarrow X$ allows us to compute the Chern classes of \mathcal{V}

$$
\begin{equation*}
\pi_{1 *}\left(e^{c_{1}\left(\mathcal{N} \otimes \mathcal{P}_{B}\right)} \operatorname{Td}\left(X \times_{B} C\right)\right)=\operatorname{ch}(\mathcal{V}) \operatorname{Td}(X) \tag{2.19}
\end{equation*}
$$

As discussed in [15], this relates in particular $c_{1}(\mathcal{N})$ and $c_{1}(\mathcal{V})$ as

$$
\begin{equation*}
c_{1}(\mathcal{N})=\left.\frac{1}{n} \pi_{C}^{*} c_{1}(\mathcal{V})\right|_{B}-\frac{1}{2} c_{1}(C)+\frac{1}{2} \pi_{C}^{*} c_{1}(B)+\gamma \tag{2.20}
\end{equation*}
$$

in terms of the cohomology class γ satisfying

$$
\begin{equation*}
\pi_{C *} \gamma=0 \tag{2.21}
\end{equation*}
$$

One can prove that γ can in general be written as

$$
\begin{equation*}
\gamma=\lambda\left(n \sigma-\pi_{C}^{*} \eta+n \pi_{C}^{*} c_{1}(B)\right) \tag{2.22}
\end{equation*}
$$

where $\lambda \in \mathbb{Q}$. Note furthermore that $c_{1}(C)$ is minus the first Chern class of the canonical bundle $K_{C}=\mathcal{O}(C)$ on C, i.e. $c_{1}(C)=-n \sigma-\pi_{C}^{*} \eta$. We now parameterise $c_{1}(\mathcal{V})$ by some element $c_{1}(\zeta) \in H^{2}(B, \mathbb{Z})$ to be specified momentarily,

$$
\begin{equation*}
c_{1}(\mathcal{V})=\pi^{*} c_{1}(\zeta) \tag{2.23}
\end{equation*}
$$

Putting everything together, we have

$$
\begin{equation*}
c_{1}(\mathcal{N})=n\left(\frac{1}{2}+\lambda\right) \sigma+\left(\frac{1}{2}-\lambda\right) \pi_{C}^{*} \eta+\left(\frac{1}{2}+n \lambda\right) \pi_{C}^{*} c_{1}(B)+\frac{1}{n} \pi_{C}^{*} c_{1}(\zeta) \tag{2.24}
\end{equation*}
$$

Since $c_{1}(\mathcal{N})$ and $c_{1}(\mathcal{V})$ must be an integer class, not every value of $\lambda \in \mathbb{Q}$ and $c_{1}(\zeta) \in$ $H^{2}(B, \mathbb{Z})$ is allowed in the ansatz for $c_{1}(\mathcal{V})$. Rather they are subject to the constraints

$$
\begin{align*}
n\left(\frac{1}{2}+\lambda\right) & \in \mathbb{Z} \\
\left(\frac{1}{2}-\lambda\right) \eta+\left(n \lambda+\frac{1}{2}\right) c_{1}(B)+\frac{1}{n} c_{1}(\zeta) & \in H^{2}(B, \mathbb{Z}) \tag{2.25}
\end{align*}
$$

but can otherwise be chosen arbitrarily. Note that if we are interested in $\mathrm{SU}(n)$ bundles as e.g. in 15, then simply $c_{1}(\zeta)=0$ so that $c_{1}(\mathcal{V})=0$. All other consistent choices yield $\mathrm{U}(n)$ bundles. Allowing non-trivial values for $c_{1}(\mathcal{V})$ was first considered in 31] and motivated by the relative Fourier-Mukai transform, but we will not invoke this picture here. ${ }^{4}$ Further

[^3]applications of the GRR theorem lead to the following expressions for the second and third Chern classes 15, 32, 31
\[

$$
\begin{align*}
& \operatorname{ch}_{2}(\mathcal{V})=-\sigma \cdot \pi^{*} \eta+\left(\frac{1}{2 n} c_{1}(\zeta)^{2}-\omega\right) F, \\
& \operatorname{ch}_{3}(\mathcal{V})=\lambda \eta \cdot\left(\eta-n c_{1}(B)\right)-\frac{1}{n} c_{1}(\zeta) \cdot \eta, \tag{2.26}
\end{align*}
$$
\]

where

$$
\begin{equation*}
\omega=-\frac{1}{24} c_{1}(B)^{2}\left(n^{3}-n\right)+\frac{1}{2}\left(\lambda^{2}-\frac{1}{4}\right) n \eta \cdot\left(\eta-n c_{1}(B)\right) . \tag{2.27}
\end{equation*}
$$

Note that $\operatorname{ch}_{3}(V)$ has already been integrated over the fiber.
As we emphasized several times, this kind of construction only gives bundles with trivial first Chern class as restricted to the elliptic fibres. To be more general, we can however twist the bundle \mathcal{V} defined via the spectral cover construction with an additional line bundle \mathcal{Q} on X with 33]

$$
\begin{equation*}
c_{1}(\mathcal{Q})=q \sigma+\pi^{*}\left(c_{1}\left(\zeta_{Q}\right)\right), \tag{2.28}
\end{equation*}
$$

where $\pi^{*}\left(c_{1}\left(\zeta_{Q}\right)\right) \in H^{2}(X, \mathbb{Z})$. The resulting $\mathrm{U}(n)$ bundle

$$
\begin{equation*}
V=\mathcal{V} \otimes \mathcal{Q} \tag{2.29}
\end{equation*}
$$

is μ-stable precisely if the original bundle \mathcal{V} is. The Chern classes for V are straightforwardly computed from the ones of \mathcal{V} and from $c_{1}(\mathcal{Q})$. Note that the contribution form $\pi^{*}\left(c_{1}\left(\zeta_{Q}\right)\right)$ can always be absorbed into an additive shift of $c_{1}(\zeta)$ by $n c_{1}\left(\zeta_{Q}\right)$. We will not make use of $\mathrm{U}(n)$ bundles with $q \neq 0$ in this article. The above Chern characters are therefore sufficient for our purposes.

2.3 Del Pezzo surfaces

As alluded to already, the Calabi-Yau condition imposes severe constraints on which complex two-surfaces are eligible as base manifolds of our elliptic fibration. Among the possibilities classified in [30] we can choose as the base manifold one of the del Pezzo surfaces dP_{r} with $r=0, \ldots, 9$. The surface dP_{r} is defined by blowing up r points in generic position on \mathbb{P}_{2}. This means that $H^{2}\left(\mathrm{dP}_{\mathrm{r}}, \mathbb{Z}\right)$ is generated by the $r+1$ elements l, E_{1}, \ldots, E_{r}, where l is the hyperplane class inherited from \mathbb{P}_{2} and the E_{m} denote the r exceptional cycles introduced by the blow-ups. The intersection form can be computed as

$$
\begin{equation*}
l \cdot l=1, \quad l \cdot E_{m}=0, \quad E_{m} \cdot E_{n}=-\delta_{m, n} . \tag{2.30}
\end{equation*}
$$

The first equation follows from the fact that two representatives of the class l define two complex lines in generic position which clearly intersect precisely once. The self-intersection for the blow-ups is the usual one for exceptional cycles. Furthermore, a complex line in generic position does not pass through any of the blown-ups, thus $l \cdot E_{m}=0$.

The Chern classes read

$$
\begin{equation*}
c_{1}\left(d P_{r}\right)=3 l-\sum_{m=1}^{r} E_{m}, \quad c_{2}\left(d P_{r}\right)=3+r . \tag{2.31}
\end{equation*}
$$

r	Generators	$\#$
1	$E_{1}, l-E_{1}$	2
2	$E_{i}, l-E_{1}-E_{2}$	3
3	$E_{i}, l-E_{i}-E_{j}$	6
4	$E_{i}, l-E_{i}-E_{j}$	10
5	$E_{i}, l-E_{i}-E_{j}, 2 l-E_{1}-E_{2}-E_{3}-E_{4}-E_{5}$	16
6	$E_{i}, l-E_{i}-E_{j}, 2 l-E_{i}-E_{j}-E_{k}-E_{l}-E_{m}$	27
7	$E_{i}, l-E_{i}-E_{j}, 2 l-E_{i}-E_{j}-E_{k}-E_{l}-E_{m}$,	
8	$3 l-2 E_{i}-E_{j}-E_{k}-E_{l}-E_{m}-E_{n}-E_{o}$	56
	$E_{i}, l-E_{i}-E_{j}, 2 l-E_{i}-E_{j}-E_{k}-E_{l}-E_{m}$,	
	$3 l-2 E_{i}-E_{j}-E_{k}-E_{l}-E_{m}-E_{n}-E_{o}$,	
	$4 l-2\left(E_{i}+E_{j}+E_{k}\right)-\sum_{i=1}^{5} E_{m_{i}}$,	
9	$f=3-\sum_{i=1}^{9} E_{i}$, and $\left\{y_{a}\right\}$ with $y_{a}^{2}=-1, y_{a} \cdot f=1$	∞

Table 1: Generators for the Mori cone of each $\mathrm{dP}_{r}, r=1, \ldots, 9$. All indices $i, j, \ldots \in\{1, \ldots, r\}$ in the table are distinct. The effective classes can be written as linear combinations of the generators with integer non-negative coefficients.

We recognize the part involving l as the first Chern class of the parent \mathbb{P}_{2}. For the second Chern class of the elliptic threefold X we obtain, applying (2.8),

$$
\begin{equation*}
c_{2}(X)=12 \sigma c_{1}(B)+(102-10 r) F . \tag{2.32}
\end{equation*}
$$

Now for a vector bundle V_{i} we can expand η_{i} and $c_{1}\left(\zeta_{i}\right)$ in a cohomological basis

$$
\begin{align*}
\eta_{i} & =\eta_{i}^{(0)} l+\sum_{m=1}^{r} \eta_{i}^{(m)} E_{m} \equiv\left(\eta_{i}^{(0)}, \eta_{i}^{(1)}, \ldots, \eta_{i}^{(r)}\right) \\
c_{1}\left(\zeta_{i}\right) & =\zeta_{i}^{(0)} l+\sum_{m=1}^{r} \zeta_{i}^{(m)} E_{m} \equiv\left(\zeta_{i}^{(0)}, \zeta_{i}^{(1)}, \ldots, \zeta_{i}^{(r)}\right) \tag{2.33}
\end{align*}
$$

As mentioned before we have to require for stability that $|\eta|$ is effective and that $\eta-n c_{1}(B)$ is effective. Fortunately, the generating system for the cone of effective curves on dP_{r} has been given in [34] and we list the reformulated result of [27] in table 1 for completeness. Recall that a general effective class can be expanded into a linear combination of these Mori cone generators with non-negative integer coefficients.

Moreover, $|\eta|$ is known to be base point free if $\eta \cdot E \geq 0$ for every curve E with $E^{2}=-1$ and $E \cdot c_{1}(B)=1$. Such curves are precisely given by the generators of the Mori cone listed in table 1 .

2.4 More bundles from extensions

The $\mathrm{U}(n)$ bundles constructed in the previous section can serve as the building block for a more general construction of vector bundles known as the extension method. Physically, the idea is to start with the direct sum of two bundles, $V_{1} \oplus V_{2}$ and deform it into a new, stable bundle V. More abstractly, if such a deformation is possible, the resulting bundle V, the extension of V_{2} by V_{1}, fits into the short exact sequence

$$
\begin{equation*}
0 \rightarrow V_{1} \rightarrow V \rightarrow V_{2} \rightarrow 0 \tag{2.34}
\end{equation*}
$$

The possible deformations of $V_{1} \oplus V_{2}$ which still fit into the exact sequence (2.34) are classified by the extension group $\operatorname{Ext}_{X}^{*}\left(V_{2}, V_{1}\right)$. In our case, since V_{1} and V_{2} are vector bundles and not merely coherent sheaves, the extension group is actually given by the cohomology groups $H^{*}\left(X, V_{1} \otimes V_{2}^{\vee}\right)$. The above extension V can be chosen non-split, i.e. V is a proper deformation of $V_{1} \oplus V_{2}$, precisely if

$$
\begin{equation*}
H^{1}\left(X, V_{1} \otimes V_{2}^{\vee}\right) \neq 0 \tag{2.35}
\end{equation*}
$$

The total Chern character of the extension bundle V follows from the ones of V_{1} and V_{2} as

$$
\begin{equation*}
\operatorname{ch}(V)=\operatorname{ch}\left(V_{1}\right)+\operatorname{ch}\left(V_{2}\right) \tag{2.36}
\end{equation*}
$$

The cohomology groups of $V, H^{*}(X, V)$, can in principle be computed from $H^{*}\left(X, V_{1}\right)$ and $H^{*}\left(X, V_{2}\right)$ by exploiting the standard fact that a short exact sequence induces a long exact sequence in cohomology.

For later use we note furthermore that the exact sequence (2.34) remains exact upon tensoring each element appearing in it by a line bundle L, i.e. the sequence

$$
\begin{equation*}
0 \rightarrow V_{1} \otimes L \rightarrow V \otimes L \rightarrow V_{2} \otimes L \rightarrow 0 \tag{2.37}
\end{equation*}
$$

is exact precisely if (2.34) is. This will allow us to obtain the cohomology groups of $V \otimes L$ from $H^{*}\left(X, V_{i} \otimes L\right)$ by invoking the long exact sequence in cohomology induced by (2.37).

2.5 Comments on μ - and Λ-stability

At string tree level, for a heterotic compactification to preserve supersymmetry, the vector bundle must be holomorphic and its field strength has to satisfy the Hermitian Yang-Mills (HYM) equation $g^{a \bar{b}} F_{a \bar{b}}=0$. The latter is most conveniently rewritten in its dual version

$$
\begin{equation*}
\star_{6}\left[J \wedge J \wedge F_{i}^{a b}\right]=0 \tag{2.38}
\end{equation*}
$$

where a, b are gauge indices and $i=1,2$ distinguishes the two E_{8} factors. A solution to this equation exists if the vector bundle is μ-stable and obeys the Donaldson-Uhlenbeck-Yau (DUY) condition

$$
\begin{equation*}
\int_{X} J \wedge J \wedge c_{1}(V)=0 \tag{2.39}
\end{equation*}
$$

Recall that a vector bundle V is called μ-stable if each subsheaf \mathcal{F} of rank smaller than the rank of V satisfies $\mu(\mathcal{F})<\mu(V)$, where the μ-slope $\mu(\mathcal{F})$ for a sheaf \mathcal{F} with respect to the Kähler form J of the manifold X is defined as

$$
\begin{equation*}
\mu(\mathcal{F})=\frac{1}{\operatorname{rk} \mathcal{F}} \int_{X} J \wedge J \wedge c_{1}(\mathcal{F}) . \tag{2.40}
\end{equation*}
$$

As has been shown in [12] by analysing the D-term supersymmetry conditions in the effective four-dimensional $\mathcal{N}=1$ supergravity, for $\mathrm{U}(N)$ bundles there exists a one-loop correction to the DUY equation. Following the same logic which has lead to the DUY theorem, it is natural to conjecture that this is due to a corresponding stringy one-loop correction to the HYM equation of the form

$$
\begin{align*}
& \star_{6}\left[J \wedge J \wedge F_{i}^{a b}-\frac{\ell_{s}^{4}}{4(2 \pi)^{2}} e^{2 \phi_{10}} F_{i}^{a b}\right. \wedge \tag{2.41}\\
&\left(\operatorname{tr}_{E_{8 i}}\left(F_{i} \wedge F_{i}\right)-\frac{1}{2} \operatorname{tr}(R \wedge R)\right) \\
&\left.+\ell_{s}^{4} e^{2 \phi_{10}} \sum_{a} N_{a}\left(\frac{1}{2} \mp \lambda_{a}\right)^{2} F_{i}^{a b} \wedge \bar{\gamma}_{a}\right]+ \text { (n.p. terms) }=0 .
\end{align*}
$$

Here $\bar{\gamma}_{a}$ denotes the Poincaré dual four-form of the two-cycles wrapped by five-branes which may or may not be present in the concrete vacuum under consideration. The positions of the five-branes are parametrized by $-1 / 2 \leq \lambda_{a} \leq 1 / 2$ and the minus sign in the last term in (2.41) is for the first E_{8} and the plus sign for the second. More information can be found in [14]. Non-renormalisation theorems for D-terms in supersymmetric theories imply that there are no higher loop corrections, but as indicated there can be non-perturbative ones.

In view of the above quantum corrections to the HYM equation it is clear that the stability concept relevant for finding solutions to (2.41) likewise has to be modified. As with Π-stability for B-type D-branes [35], in the $E_{8} \times E_{8}$ heterotic string this new notion of stability would correct the tree-level concept of μ-stability. ${ }^{5}$

If we were not dealing with the zero-slope equation (2.41), but instead allowed for some unspecified term const. \times vol. id on the righthand side, the situation would be very similar to the perturbative deformation of the HYM equation as encountered in the context of Gieseker stability [36]. More precisely, we would like to conjecture that this more general, complete loop and non-perturbative corrected HYM equation,

$$
\begin{align*}
\star_{6}\left[J \wedge J \wedge F_{i}^{a b}-\frac{\ell_{s}^{4}}{4(2 \pi)^{2}} e^{2 \phi_{10}} F_{i}^{a b} \wedge\left(\operatorname{tr}_{E_{8 i}}\left(F_{i} \wedge F_{i}\right)-\frac{1}{2} \operatorname{tr}(R \wedge R)\right)+\right. \tag{2.42}\\
\left.\ell_{s}^{4} e^{2 \phi_{10}} \sum_{a} N_{a}\left(\frac{1}{2} \mp \lambda_{a}\right)^{2} F_{i}^{a b} \wedge \bar{\gamma}_{a}\right]+(\text { n.p. terms })=\text { const. } \times \text { vol. id }{ }^{a b},
\end{align*}
$$

[^4]has a solution if the bundle is stable with respect to a corrected slope $\Lambda(\mathcal{F})=\arg Z(\mathcal{F})$ with the central charge
\[

$$
\begin{align*}
Z(\mathcal{F})=\frac{1}{2 \pi g_{s} \ell_{s}^{6}} \operatorname{Tr} \int_{X} e^{J}(1 & \left.+2 \pi i \alpha^{\prime} g_{s} \mathcal{F}\right)\left[1-\frac{\ell_{s}^{4} g_{s}^{2}}{2}\left(\frac { 1 } { 4 (2 \pi) ^ { 2 } } \left(\operatorname{tr}_{E_{8 i}}\left(F_{i} \wedge F_{i}\right)\right.\right.\right. \tag{2.43}\\
& \left.\left.\left.-\frac{1}{2} \operatorname{tr}(R \wedge R)\right)-\sum_{a} N_{a}\left(\frac{1}{2} \mp \lambda_{a}\right)^{2} \bar{\gamma}_{a}\right)\right]+ \text { (n.p. terms) }
\end{align*}
$$
\]

We call such a bundle Λ-stable and, neglecting the unknown non-perturbative corrections in (2.43), we call it λ-stable. The reasoning behind this statement is that the tree-level part on the lefthand side of (2.42) can be tuned to dominate arbitrarily over the quantum corrections by choosing the expansion parameter g_{s} correspondingly small. For more information we refer to [37]. This is no longer possible as soon as we insist that, a forteriori, (2.41) is satisfied, which induces in addition $\Lambda(V)=0$. After all, we are now cancelling the tree-level and the higher order parts against each other. A more refined analysis of the general quantum corrected stability concept is therefore desirable.

Luckily, for $\mathrm{SU}(N)$ bundles and the particular type of $\mathrm{U}(N)$ bundles treated in this paper a simplification occurs since we will be interested in special bundles defining a heterotic compactification with gauge group flipped $\mathrm{SU}(5) \times \mathrm{U}(1)_{X}$ and $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_{Y}$. As has been shown in [14], the same conditions on the bundles rendering the $\mathrm{U}(1)_{X}$ and $\mathrm{U}(1)_{Y}$ massless imply that

$$
\begin{equation*}
\lambda(V)=\mu(V)=0 \tag{2.44}
\end{equation*}
$$

Clearly, this also holds trivially for all $\mathrm{SU}(N)$ bundles. Whenever (2.44) applies, the above arguments imply that λ-stability guarantees the existence of a solution to (2.41). Moreover, for a μ-stable bundle V, we can immediately conclude in this case that it is also λ-stable for sufficiently small string coupling g_{s}, as for the finite number of subsheaves we can tune g_{s} such that

$$
\begin{equation*}
\lambda(\mathcal{F})=\mu(\mathcal{F})+O\left(g_{s}^{2}\right)<\mu(V)=\lambda(V) \tag{2.45}
\end{equation*}
$$

This is the reason why it is safe for us to work with μ-stable $\mathrm{U}(N)$ bundles, about which much more is known.

We now collect the conditions for μ-stability of our extension bundles V as defined in (2.34). Since V_{1} and V_{2} are both constructed via irreducible spectral covers, they are guaranteed to be μ-stable with respect to a suitable polarisation, as reviewed in section 2.2. A necessary condition for the extension (2.34) to yield again a stable vector bundle is clearly that it be non-split and that $\mu\left(V_{1}\right)<\mu(V)=0$. Otherwise V_{1} would be a subbundle of V with slope not smaller than that of V. It was stated in 28] that this condition is also sufficient. To our knowledge, no proof of this assertion, upon which various models in the literature rely, has been given. ${ }^{6}$. Appendix A contains a detailed proof of this statement.

[^5]More precisely we will show there that

$$
\begin{equation*}
\mathrm{V} \text { is } \mu \text {-stable w.r.t. } J \Longleftrightarrow H^{1}\left(X, V_{1} \otimes V_{2}^{\vee}\right) \neq 0 \text { and } \mu\left(V_{1}\right)<\mu(V) . \tag{2.46}
\end{equation*}
$$

The condition (2.46) can be read as a constraint on the Kähler form J of the manifold X and has to be satisfied inside the Kähler cone such that also V_{1} and V_{2} are simultaneously stable with respect to it.

3. Computation of cohomology classes

Let us now come to the main technical section of this paper, where we partly review and partly newly derive the mathematical formalism for the computation of the relevant vector bundle cohomology classes. The computation of $H^{i}(X, V)$ has already been described in very much detail in [27]. Here, we instead compute the more general classes $H^{i}\left(X, V_{a} \otimes V_{b}\right)$ and show, using the Leray spectral sequence, that they are localised on the curve $C_{a} \cap C_{b}$. The cohomology classes $H^{i}\left(X, \bigwedge^{2} V\right)$ were also covered in [27], but our more physically inspired approach gives a deviating result, which however is consistent with the Riemann-Roch-Hirzebruch theorem on the support curve. We also provide the computation of the cohomology classes $H^{i}\left(X, \mathbf{S}^{2} V\right) .^{7}$

An important tool for the computation of the cohomology of vector bundles on elliptic fibrations is the Leray spectral sequence. More generally, for any fibration $\pi: X \rightarrow B$, the Leray spectral sequence relates the cohomology of any bundle V on X to the cohomology of certain sheaves on the base B. These sheaves are called higher direct image sheaves $R^{i} \pi_{*} V$ and are defined by

$$
\begin{equation*}
R^{i} \pi_{*} V(U)=H^{i}\left(\pi^{-1}(U),\left.V\right|_{\pi^{-1}(U)}\right) \tag{3.1}
\end{equation*}
$$

for any open set $U \subset B$. In particular, observe that for any point $b \in B$

$$
\begin{equation*}
\left.R^{i} \pi_{*} V\right|_{b}=H^{i}\left(f_{b},\left.V\right|_{f_{b}}\right), \tag{3.2}
\end{equation*}
$$

that is, the higher image sheaf captures the cohomology of V along the fibers f_{b} of π. In the case of an elliptic fibration, only $R^{0} \pi_{*}$ and $R^{1} \pi_{*}$ are non-zero and the Leray sequence degenerates to the long exact sequence

$$
\begin{gather*}
0 \longrightarrow H^{1}\left(B, \pi_{\star} V\right) \longrightarrow H^{1}(X, V) \longrightarrow H^{0}\left(B, R^{1} \pi_{\star} V\right) \longrightarrow H^{2}\left(B, \pi_{\star} V\right) \longrightarrow H^{2}(X, V) \longrightarrow H^{1}\left(B, R^{1} \pi_{\star} V\right) \longrightarrow 0 \tag{3.3}\\
\longrightarrow
\end{gather*}
$$

together with

$$
\begin{equation*}
H^{0}(X, V)=H^{0}\left(B, \pi_{\star} V\right), \quad H^{3}(X, V)=H^{2}\left(B, R^{1} \pi_{\star} V\right) \tag{3.4}
\end{equation*}
$$

[^6]In addition, Serre duality on the one-dimensional fiber implies relative duality, i.e.

$$
\begin{equation*}
\left(R^{1} \pi_{\star} V\right)^{\vee}=\pi_{\star}\left(V^{\vee} \otimes K_{X} \otimes \pi^{\star} K_{B}^{\vee}\right) \tag{3.5}
\end{equation*}
$$

Another useful relation is the projection formula

$$
\begin{equation*}
R^{q} \pi_{\star}\left(V \otimes \pi^{\star} \mathcal{F}\right)=R^{q} \pi_{\star}(V) \otimes \mathcal{F} \tag{3.6}
\end{equation*}
$$

for any vector bundle \mathcal{F} on B. To obtain information about the Chern classes of the higher image sheaves one can use the Grothendieck-Riemann-Roch theorem

$$
\begin{equation*}
\pi_{\star}(\operatorname{ch}(V) \operatorname{Td}(X))=\operatorname{ch}\left(\pi_{!} \mathrm{V}\right) \operatorname{Td}(B) \tag{3.7}
\end{equation*}
$$

with

$$
\begin{equation*}
\pi_{!} V=\sum_{i=1}^{d}(-1)^{i} R^{i} \pi_{*} V \tag{3.8}
\end{equation*}
$$

for fiber dimension d. In (3.7) the push-forward π_{\star} of a form is defined as integration over the fiber. The Todd classes are defined in terms of Chern classes as

$$
\begin{equation*}
\operatorname{Td}(X)=1+\frac{c_{1}(X)}{2}+\frac{c_{2}(X)+c_{1}^{2}(X)}{12}+\frac{c_{1}(X) c_{2}(X)}{24}+\ldots \tag{3.9}
\end{equation*}
$$

and simplify considerably for Calabi-Yau manifolds with $c_{1}(X)=0$.

3.1 Cohomology classes $H^{i}(X, \mathcal{L})$

In order to compute the cohomology classes of vector bundles V on X, we need to know how to compute the cohomology classes of any line bundle \mathcal{L} on X. Henceforth, X will be a generic elliptic fibration over a complex two dimensional surface B with zero section σ. Then any line bundle on X will be of the form

$$
\begin{equation*}
\mathcal{L}=\mathcal{O}_{X}(n \sigma) \otimes \pi^{\star} L \tag{3.10}
\end{equation*}
$$

for some line bundle L on B. Applying the projection formula gives

$$
\begin{equation*}
\pi_{\star} \mathcal{L}=\pi_{\star} \mathcal{O}_{X}(n \sigma) \otimes L, \quad R^{1} \pi_{\star} \mathcal{L}=R^{1} \pi_{\star} \mathcal{O}_{X}(n \sigma) \otimes L \tag{3.11}
\end{equation*}
$$

The higher image sheaves of $\mathcal{O}_{X}(n \sigma)$ for any n are given by [27],

$$
\begin{align*}
\pi_{*}\left(\mathcal{O}_{X}(n \sigma)\right) & = \begin{cases}\mathcal{O}_{B} \oplus \mathcal{O}_{B}\left(-2 c_{1}(B)\right) \oplus \ldots \oplus \mathcal{O}_{B}\left(-n c_{1}(B)\right) & n \geqslant 0 \\
0 & n<0\end{cases} \\
R^{1} \pi_{*}\left(\mathcal{O}_{X}(n \sigma)\right) & = \begin{cases}0 & n>0 \\
\mathcal{O}_{B}\left((-n-1) c_{1}(B)\right) \oplus \ldots & \\
\ldots \oplus \mathcal{O}_{B}\left(c_{1}(B)\right) \oplus \mathcal{O}_{B}\left(-c_{1}(B)\right) & n \leqslant 0 .\end{cases} \tag{3.12}
\end{align*}
$$

Therefore, in order to apply the Leray spectral sequence, one merely has to determine the cohomology classes $H^{i}(B, L)$ of general line bundles over the base B. In our case B is a del-Pezzo surface $d P_{r}$ and we relegate our derivation of $H^{i}\left(d P_{r}, L\right)$ to appendix B.

3.2 Cohomology classes $H^{i}\left(X, V_{a} \otimes V_{b}\right)$

In this section we will show how to compute the cohomology of $V_{a} \otimes V_{b}$, where both V_{a} and V_{b} are vector bundles on X which admit an irreducible spectral cover.

These cohomology classes are necessary to compute the cohomology of the vector bundles constructed via extensions as described in section 2.4. In addition, they provide a natural setup for computing $H^{i}\left(X, \bigwedge^{2} V\right)$ and $H^{i}\left(X, \mathbf{S}^{2} V\right)$ for vector bundles V given by the spectral cover construction. Note that the cohomology groups $H^{i}\left(X, V_{a} \otimes V_{b}\right)=$ $\operatorname{Ext}_{X}^{i}\left(V_{a}^{\vee}, V_{b}\right)$ also appear naturally in the $\mathrm{SO}(32)$ heterotic and the S-dual Type I string where they count matter fields in bifundamental representations of an $\mathrm{U}\left(N_{a}\right) \times \mathrm{U}\left(N_{b}\right)$ gauge group 13 , 33, 40].

To begin with, it is useful to review the results of 27] for the computation of the cohomology of a vector bundle V with vanishing first Chern class given by an irreducible spectral cover C and a globally defined line bundle \mathcal{N}. In oder to use the Leray sequence for $\pi: X \rightarrow B$ one must find $\pi_{*} V$ and $R^{1} \pi_{*} V$. Recall from section 2.2 that the restriction of V to a generic fiber f_{b} for $b \in B$ is given by

$$
\begin{equation*}
\left.V\right|_{f_{b}}=\oplus_{i=1}^{r k(V)} \mathcal{O}_{f_{b}}\left(Q_{i}-p\right) \tag{3.13}
\end{equation*}
$$

where p and the points Q_{i} denote the intersection of the fiber f_{b} with σ and the spectral cover respectively. All of these points are disjoint under our assumption of an irreducible spectral cover. Therefore, $\left.\pi_{*} V\right|_{b}=H^{0}\left(f_{b},\left.V\right|_{f_{b}}\right)$ vanishes for a generic fiber. In addition, for any vector bundle $V, \pi_{*} V$ is torsion free and hence we find that $\pi_{*} V$ vanishes identically. It also follows from these considerations that $R^{1} \pi_{*} V$ is a sheaf on B supported on the curve $c=C \cap \sigma$ where we identify $B \cong \sigma$. It was shown in 27] that

$$
\begin{equation*}
R^{1} \pi_{*} V=\left.\mathcal{N} \otimes K_{B}\right|_{c} \tag{3.14}
\end{equation*}
$$

Applying these results to the Leray spectral sequence determines

$$
\begin{equation*}
H^{0}(X, V)=H^{3}(X, V)=0, \quad H^{i}(X, V)=H^{i-1}\left(c,\left.\mathcal{N} \otimes K_{B}\right|_{c}\right), i=1,2 \tag{3.15}
\end{equation*}
$$

In particular, it follows that

$$
\begin{equation*}
-\chi(X, V)=\chi\left(c, \mathcal{N} \otimes K_{B}\right) \tag{3.16}
\end{equation*}
$$

a result which can be easily checked with the help of the numerical expressions for $c_{3}(V)$, \mathcal{N} and C of section 2.2 .

Consider now two vector bundles V_{a} and V_{b} with structure groups $\mathrm{U}\left(n_{a}\right)$ and $\mathrm{U}\left(n_{b}\right)$ given by the spectral cover construction. The two irreducible spectral covers C_{a} and C_{b} are in the linear system

$$
\begin{equation*}
C_{a} \in\left|n_{a} \sigma+\pi^{*} \eta_{a}\right|, \quad C_{b} \in\left|n_{b} \sigma+\pi^{*} \eta_{b}\right| \tag{3.17}
\end{equation*}
$$

and the spectral line bundles \mathcal{N}_{a} and \mathcal{N}_{b} are defined as in (2.24). Note that the case $V_{a}=\mathcal{O}_{X}$ is included by choosing $C_{a}=\sigma$ and $\mathcal{N}_{a}=\mathcal{O}_{X}$. It follows from the discussion
above that the basic strategy to compute the cohomology of $V_{a} \otimes V_{b}$ is to compute its spectral data. In particular, we need to find $H^{i}\left(c_{a b},\left.\mathcal{N}_{a b} \otimes K_{B}\right|_{c_{a b}}\right), i=1,2$ where $\mathcal{N}_{a b}$ is the spectral line bundle, or more generally, a rank one sheaf corresponding to $V_{a} \otimes V_{b}$ and $c_{a b}$ is the intersection of the spectral cover of $V_{a} \otimes V_{b}$ with the zero section.

Before we attempt to compute $\left.\mathcal{N}_{a b}\right|_{c_{a b}}$, it is instructive to consider the F-theoretic realization. There the chiral matter is defined by $\operatorname{Ext}_{X}^{i}\left(V_{a}^{\vee}, V_{b}\right)$, which is expected to be localized on the intersection of the spectral cover for V_{a}^{\vee} and V_{b}, i.e. on the intersection of the two stacks of D7-branes. It follows from (3.13) that the spectral cover for V_{a}^{\vee} is τC_{a}, with τ being the involution defined at the end of section 2.1. Generically, $\tau C_{a} \cap C_{b}$ is a smooth curve, denoted by D in the sequel, whose cohomology class is

$$
\begin{align*}
{[D] \equiv\left[\tau C_{a} \cap C_{b}\right] } & =\pi^{*}\left(-n_{a} n_{b} c_{1}(B)+n_{a} \eta_{b}+n_{b} \eta_{a}\right) \sigma+\left(\eta_{a} \eta_{b}\right) F \\
& =\pi^{*}\left[c_{a b}\right] \sigma+a_{F} F \tag{3.18}
\end{align*}
$$

By $c_{a b}$ we denote the projection of the curve on the base. It can be shown using the techniques of 27] that the so-defined class $\left[c_{a b}\right]$ is indeed the class of the intersection of the spectral cover of $V_{a} \otimes V_{b}$ with the zero section σ.

To find the points $b \in B$ which are contained in $c_{a b}$ consider the restriction of $V_{a} \otimes V_{b}$ to a generic fiber f_{b}

$$
\begin{equation*}
\left.V_{a} \otimes V_{b}\right|_{f_{b}}=\left.\left.V_{a}\right|_{f_{b}} \otimes V_{b}\right|_{f_{b}}=\oplus_{i=1}^{r k\left(V_{a}\right)} \mathcal{O}_{f_{b}}\left(Q_{i}^{a}-p\right) \otimes \oplus_{j=1}^{r k\left(V_{b}\right)} \mathcal{O}_{f_{b}}\left(Q_{j}^{b}-p\right) \tag{3.19}
\end{equation*}
$$

That is, the intersection points of the spectral cover of $V_{a} \otimes V_{b}$ with the fibre f_{b} are given by the set $\left\{Q_{i}^{a}+Q_{j}^{b}\right\}_{i j}$ and the points $b \in c_{a b}$ are the subset thereof defined by Q_{i}^{a} and Q_{j}^{b} in the fiber f_{b} such that

$$
Q_{i}^{a}+Q_{j}^{b}=0
$$

Here we take addition in the group law of $f_{b} . D$ and $c_{a b}$ are related via the surjective map

$$
\pi_{D}: \tau C_{a} \cap C_{b} \rightarrow c_{a b}
$$

which is generically one-to-one. As noted above, D is generically smooth, while it is far from obvious that $c_{a b}$ is.

It follows from this discussion that $\pi_{*}\left(V_{a} \otimes V_{b}\right)$ vanishes identically. Using the Leray spectral sequence and Serre duality this implies that

$$
H^{0}\left(X, V_{a} \otimes V_{b}\right)=H^{3}\left(X, V_{a} \otimes V_{b}\right)=0
$$

In addition, $R^{1} \pi_{*}\left(V_{a} \otimes V_{b}\right)$ has support along the curve $c_{a b}$ and is given by $R^{1} \pi_{*}\left(V_{a} \otimes V_{b}\right)=$ $\left.\mathcal{N}_{a b} \otimes K_{B}\right|_{c_{a b}}$.

To derive an expression for $\left.\mathcal{N}_{a b}\right|_{c_{a b}}$, recall from section 2.2 that

$$
\begin{equation*}
\left.V\right|_{B}=\pi_{C *} \mathcal{N} \tag{3.20}
\end{equation*}
$$

Hence, at a generic point $b \in B$, we find

$$
\begin{equation*}
\left.V\right|_{b}=H^{0}\left(\pi_{C}^{-1}(b),\left.\mathcal{N}\right|_{\pi_{C}^{-1}(b}\right)=\oplus_{i}\left(\left.\mathcal{N}\right|_{Q_{i}}\right) \tag{3.21}
\end{equation*}
$$

That implies for the tensor product $V_{a} \otimes V_{b}$

$$
\begin{equation*}
\left.V_{a} \otimes V_{b}\right|_{b}=\oplus_{i j}\left(\left.\mathcal{N}_{a b}\right|_{Q_{i}^{a}+Q_{j}^{b}}\right)=\oplus_{i j}\left(\left.\left.\mathcal{N}_{a}\right|_{Q_{i}^{a}} \otimes \mathcal{N}_{b}\right|_{Q_{j}^{b}}\right) . \tag{3.22}
\end{equation*}
$$

The first and second equality follow from the application of formula (3.21) to $V_{a} \otimes V_{b}$ and to V_{a} and V_{b}, respectively. Hence we see that the fiber of $\mathcal{N}_{a b}$ at $Q_{i}+Q_{j}$ is the tensor product of the fiber of \mathcal{N}_{a} at Q_{i}^{a} with the fiber of \mathcal{N}_{b} at Q_{j}^{b}.

Let us assume that $b \in c_{a b}$. Following the discussion above, this implies that there are two points Q_{i}^{a} and Q_{i}^{b} obeying $Q_{i}^{b}=-Q_{j}^{a}$. Replacing \mathcal{N}_{a} with $\tau^{*} \mathcal{N}_{a}$ we find

$$
\begin{equation*}
\left.\mathcal{N}_{a b}\right|_{Q_{i}^{a}+Q_{j}^{b}}=\left.\left.\tau^{*} \mathcal{N}_{a}\right|_{-Q_{i}^{a}} \otimes \mathcal{N}_{b}\right|_{Q_{j}^{b}} . \tag{3.23}
\end{equation*}
$$

This description is certainly correct for a generic point $b \in c_{a b}$. Therefore, a natural conjecture for the spectral rank one sheaf of $V_{a} \otimes V_{b}$ restricted to $c_{a b}$ is

$$
\begin{equation*}
\left.\mathcal{N}_{a b}\right|_{a b}=\pi_{*}\left(\left.\tau^{*} \mathcal{N}_{a} \otimes \mathcal{N}_{b}\right|_{\tau C_{a} \cap C_{b}}\right) . \tag{3.24}
\end{equation*}
$$

In particular, using the finiteness of π_{D}, we find for the cohomology of $V_{a} \otimes V_{b}$

$$
\begin{align*}
& H^{1}\left(X, V_{a} \otimes V_{b}\right)=H^{0}\left(\tau C_{a} \cap C_{b}, \tau^{*} \mathcal{N}_{a} \otimes \mathcal{N}_{b} \otimes K_{B}\right), \tag{3.25}\\
& H^{2}\left(X, V_{a} \otimes V_{b}\right)=H^{1}\left(\tau C_{a} \cap C_{b}, \tau^{*} \mathcal{N}_{a} \otimes \mathcal{N}_{b} \otimes K_{B}\right) .
\end{align*}
$$

Observe that for simply connected Calabi-Yau threefolds the Picard group is discrete. Therefore, spectral line bundles \mathcal{N}_{a} with $\tau^{*} c_{1}\left(\mathcal{N}_{a}\right)=c_{1}\left(\mathcal{N}_{a}\right)$ satisfy $\tau^{*} \mathcal{N}_{a}=\mathcal{N}_{a}$. Note that the spectral line bundles appearing in our applications are just of this type.

In the sequel we will give a numerical proof of these results using general properties of the Fourier-Mukai transform. In particular, we will prove that

$$
H^{i}\left(X, V_{a} \otimes V_{b}\right)=H^{i-1}(D, \mathcal{L}), i=1,2
$$

for some rank one sheaf \mathcal{L} with

$$
\left.c_{1}(\mathcal{L})=c_{1}\left(\mathcal{N}_{a} \otimes \mathcal{N}_{b} \otimes K_{B}\right)\right)\left.\right|_{D} .
$$

To begin with, note that the projection formula allows us to write

$$
\begin{equation*}
V_{a} \otimes V_{b}=\pi_{1 \star}\left(\mathcal{P}_{B} \otimes \pi_{2}^{\star} \mathcal{N}_{b} \otimes \pi_{1}^{*} V_{a}\right) . \tag{3.26}
\end{equation*}
$$

Hence we have the two maps

Since the map π_{1} is finite, i.e. its fiber consists of n_{a} points, the Leray spectral sequence for π_{1} reduces to the following relation for the cohomology classes

$$
\begin{equation*}
H^{i}\left(X \times_{B} C_{b}, \mathcal{P}_{B} \otimes \pi_{2}^{\star} \mathcal{N}_{b} \otimes \pi_{1}^{*} V_{a}\right)=H^{i}\left(X, V_{a} \otimes V_{b}\right) \quad \text { for } i=\{0,1,2,3\} . \tag{3.28}
\end{equation*}
$$

We will now apply the Leray sequence to the projection $\pi_{2}: X \times_{B} C_{a} \rightarrow C_{a}$. To compute $\pi_{2 *}\left(\mathcal{P}_{B} \otimes \pi_{2}^{*} \mathcal{N}_{b} \otimes \pi_{1}^{*} V_{a}\right)$ consider its restriction to a point $x \in C_{b}$

$$
\begin{align*}
\left.\pi_{2 *}\left(\mathcal{P}_{B} \otimes \pi_{2}^{*} \mathcal{N}_{b} \otimes \pi_{1}^{*} V_{a}\right)\right|_{x} & =H^{0}\left(\left.\left(\mathcal{P}_{B} \otimes \pi_{2}^{*} \mathcal{N}_{b} \otimes \pi_{1}^{*} V_{a}\right)\right|_{E_{\pi(x) \times x}}\right) \tag{3.29}\\
& =H^{0}\left(\mathcal{O}_{E_{\pi(x)}}(p-x) \otimes\left(\oplus_{j} \mathcal{O}_{E_{\pi(x)}}\left(Q_{i}^{a}-p\right)\right) .\right.
\end{align*}
$$

Under the assumption of irreducibility of C_{a} and C_{b} this vanishes clearly for generic x. Therefore $\pi_{2 *}\left(\mathcal{P}_{B} \otimes \pi_{2}^{*} \mathcal{N}_{b} \otimes \pi_{1}^{*} V_{a}\right)$ vanishes identically, and we find

$$
H^{i}\left(X \times_{B} C_{a}, \mathcal{P}_{B} \otimes \pi_{2}^{\star} \mathcal{N}_{b} \otimes \pi_{1}^{*} V_{a}\right)=H^{i-1}\left(C_{b}, R^{1} \pi_{2 *}\left(\mathcal{P}_{B} \otimes \pi_{2}^{*} \mathcal{N}_{b} \otimes \pi_{1}^{*} V_{a}\right)\right), i=1,2
$$

Combining this result with (3.28) gives

$$
\begin{equation*}
H^{i}\left(X, V_{a} \otimes V_{b}\right)=H^{i-1}\left(C_{b}, R^{1} \pi_{2 *}\left(\mathcal{P}_{B} \otimes \pi_{2}^{*} \mathcal{N}_{b} \otimes \pi_{1}^{*} V_{a}\right)\right), i=1,2 . \tag{3.30}
\end{equation*}
$$

Note that it follows also from considerations above that $R^{1} \pi_{2 *}\left(\mathcal{P}_{B} \otimes \pi_{2}^{*} \mathcal{N}_{b} \otimes \pi_{1}^{*} V_{a}\right)$ actually has support only on $\tau C_{a} \cap C_{b}$. Hence we define a rank one sheaf on D

$$
i_{*} \mathcal{L}=R^{1} \pi_{2 *}\left(\mathcal{P}_{B} \otimes \pi_{2}^{*} \mathcal{N}_{b} \otimes \pi_{1}^{*} V_{a}\right),
$$

where $i: D \rightarrow C_{b}$ denotes the inclusion map. Using Grothendieck-Riemann-Roch theorem for π_{2} we can compute the Chern classes of $i_{*} \mathcal{L}$. At zero order we find

$$
\begin{align*}
\operatorname{ch}_{0}\left(R^{1} \pi_{2 *}\left(\mathcal{P}_{B} \otimes \pi_{2}^{*} \mathcal{N}_{b} \otimes \pi_{1}^{*} V_{a}\right)\right) & =\pi_{2 \star}\left[c_{1}(W)+\frac{n_{b}}{2} c_{1}\left(X \times_{B} C_{a}\right)\right] \tag{3.31}\\
& =\pi_{2 \star}\left[\Delta-\sigma_{1}\right]=0 .
\end{align*}
$$

This was expected, since $R^{1} \pi_{2 *}\left(\mathcal{P}_{B} \otimes \pi_{2}^{*} \mathcal{N}_{b} \otimes \pi_{1}^{*} V_{a}\right)$ is supported only on the curve D. Similarly, at first order we get

$$
\begin{equation*}
c_{1}\left(i_{*} \mathcal{L}\right)=\left[C_{b} \cdot C_{a}\right], \tag{3.32}
\end{equation*}
$$

in agreement with $\left[\tau C_{a}\right]=\left[C_{a}\right]$ and $[D]=\left[C_{b} \cdot C_{a}\right]$. For the second Chern class we obtain

$$
\begin{align*}
\operatorname{ch}_{2}\left(i_{*} \mathcal{L}\right)= & -\lambda_{a}\left(-n_{a} \sigma_{2}+\pi^{*} \eta_{a}-n_{a} \pi^{*} c_{1}(B)\right) \cdot C_{a} \cdot C_{b} \\
& -\lambda_{b}\left(-n_{b} \sigma_{2}+\pi^{*} \eta_{b}-n_{b} \pi^{*} c_{1}(B)\right) \cdot C_{a} \cdot C_{b} \\
& +\left(\frac{1}{n_{a}} c_{1}\left(\zeta_{a}\right)+\frac{1}{n_{b}} c_{1}\left(\zeta_{b}\right)\right) \cdot C_{a} \cdot C_{b}+\frac{1}{2} C_{a} \cdot C_{a} \cdot C_{b}-p t s . \tag{3.33}
\end{align*}
$$

Here the number of points pts $\not \subset C_{a} \cap C_{b}$ is given by pts $=\left(\sigma_{2}+c_{1}(B)\right) \cdot c_{1}(B) \cdot C_{a}=$ $\eta_{a} \cdot c_{1}(B) \geq 0$.

The interpretation of this result is as follows: First, the additional class of points appearing in (3.33), as observed in [32], reflects the fact that there exist point-like singularities
in $X \times{ }_{B} C_{a}$. This happens when the discriminant locus meets the branch locus of $C \rightarrow B$. These can be blown up leading to changes in the Chern classes such that for the simplest choice of bundle resolution this extra term disappears [32].

We are left with computing the Chern classes of \mathcal{L}. Using Grothendieck-Riemann-Roch for the map $i: D \rightarrow C_{b}$, one finds that \mathcal{L} has rank one and that

$$
\begin{equation*}
c_{1}(\mathcal{L})=\operatorname{ch}_{2}\left(i_{*} \mathcal{L}\right)+\frac{1}{2} C_{a} \cdot C_{a} \cdot C_{b} \tag{3.34}
\end{equation*}
$$

As can easily be verified, this implies that

$$
\begin{equation*}
c_{1}(\mathcal{L})=\left.c_{1}\left(\mathcal{N}_{a} \otimes \mathcal{N}_{b} \otimes \pi^{*} K_{B}\right)\right|_{D} \tag{3.35}
\end{equation*}
$$

thus proving our claim.
To summarize:
The non-vanishing cohomology classes of the tensor product of two bundles defined via the spectral cover method can be computed from the cohomology classes of a certain line bundle on the intersection curve of the two spectral surfaces:

$$
\begin{equation*}
H^{i+1}\left(X, V_{a} \otimes V_{b}\right)=H^{i}\left(\tau C_{a} \cap C_{b}, \tau^{*} \mathcal{N}_{a} \otimes \mathcal{N}_{b} \otimes K_{B}\right), \quad \text { for } i=0,1 \tag{3.36}
\end{equation*}
$$

Consistently, the direct Riemann-Roch-Hirzebruch theorem on the support curve yields the correct Euler characteristic of the bundle $V_{a} \otimes V_{b}$ on X,

$$
\begin{equation*}
-\chi\left(X, V_{a} \otimes V_{b}\right)=c_{1}\left(\tau^{*} \mathcal{N}_{a} \otimes \mathcal{N}_{b} \otimes K_{B}\right)_{C_{a} \cap C_{b}}-\frac{1}{2}\left(C_{a}+C_{b}\right) \cdot C_{a} \cdot C_{b} \tag{3.37}
\end{equation*}
$$

The computation of $H^{i}\left(X, V_{a} \otimes V_{b}\right)$ is therefore reduced to the computation of the cohomology of a line bundle over the curve $\tau C_{a} \cap C_{b}$ which is the restriction of a line bundle defined on X. The standard procedure in such situations is to invoke a series of Koszul sequences relating the cohomology of the restriction $\mathcal{N}_{a} \otimes \mathcal{N}_{b} \otimes K_{B}$ to that of line bundles on X. The Koszul sequences which do the job for us are displayed in appendix C. Also, the cohomology of line bundles of X is easy to compute in view of section 3.1 and with the help of the results of appendix B.

3.3 Cohomology classes $H^{i}\left(X, \bigwedge^{2} V\right)$ and $H^{i}\left(X, \mathbf{S}^{2} V\right)$

In this section we compute the cohomology of $\bigwedge^{2} V$ and $\mathbf{S}^{2} V$ for the case that V is a vector bundle of rank r defined by the spectral cover construction. Since our result differs from the one in 27, we present our derivation in some detail.

To begin with, recall that generally

$$
\begin{equation*}
V \otimes V=\left[\bigwedge^{2} V\right] \oplus\left[\mathbf{S}^{2} V\right] \tag{3.38}
\end{equation*}
$$

Using the results of the previous section for $V=V_{a}=V_{b}$, we can immediately conclude

$$
\begin{equation*}
H^{i+1}(X, V \otimes V)=H^{i}\left(\tau C \cap C, \tau^{*} \mathcal{N} \otimes \mathcal{N} \otimes K_{B}\right), \quad \text { for } i=0,1 \tag{3.39}
\end{equation*}
$$

In the sequel we will again assume that indeed $\tau^{*} \mathcal{N}=\mathcal{N}$. The zero and third order cohomology groups vanish and the righthand side of (3.39) can be computed using the Koszul sequences in appendix C.

To proceed, we will again use the F-theory respectively Type IIB orientifold intuition. In the orientifold limit of the dual F-theory, the orientifold projection is simply $\Omega I_{2}(-1)^{F_{L}}$, where I_{2} denotes the holomorphic involution of the fiber T^{2}. For a stack of N D7-branes wrapping a four-cycle C and carrying a $\mathrm{U}(N)$ gauge group, matter fields transforming in the symmetric and anti-symmetric representations of the gauge group are localized on the intersection of C with the image of C under the holomorphic involution I_{2}. On the heterotic side the orientifold projection maps precisely to the involution τ discussed at the end of section 2.1. Therefore the matter is localized on the curve

$$
\begin{equation*}
D=\tau C \cap C \tag{3.40}
\end{equation*}
$$

Note that D is invariant under τ. To study the curve D, we consider the fiberwise decomposition of (3.38) for a generic fiber f_{b}

$$
\begin{align*}
\left(\oplus_{i} \mathcal{O}_{f_{b}}\left(Q_{i}-p\right)\right) \otimes\left(\oplus_{j} \mathcal{O}_{f_{b}}\left(Q_{j}-p\right)\right) & =\left(\oplus_{i<j} \mathcal{O}_{f_{b}}\left(Q_{i}+Q_{j}-2 p\right)\right) \tag{3.41}\\
& \oplus\left(\oplus_{i \leqslant j} \mathcal{O}_{f_{b}}\left(Q_{i}+Q_{j}-2 p\right)\right)
\end{align*}
$$

We recall from the previous section that the condition on the eigenvalues Q_{i} of V on a fiber f_{b} to be in D are

$$
\begin{equation*}
Q_{j}=-Q_{i} \tag{3.42}
\end{equation*}
$$

Let us assume $i=j$. Then we find $2 Q_{i}=0$. This is the intersection of C with the zero section σ and the intersection of C with the triple section σ_{t} describing points of order two on elliptic fiber. Let us assume that $i \neq j$. Then $Q_{i}=-Q_{j}$ implies $Q_{j}=-Q_{i}$, hence this fiber contains two points of D. We conclude that D generically consists of three components

$$
\begin{equation*}
D=D \cap \sigma+D \cap \sigma_{t}+D^{\prime}=C \cap \sigma+C \cap \sigma_{t}+D^{\prime} \tag{3.43}
\end{equation*}
$$

However, the fixed point locus $C \cap \sigma_{\tau}=C \cap \sigma+C \cap \sigma_{t}$ intersects D^{\prime} in

$$
\begin{equation*}
R=\left(C-\sigma_{\tau}\right) \cdot C \cdot \sigma_{\tau} \tag{3.44}
\end{equation*}
$$

points. It follows that for the line bundle $L^{2}=\mathcal{N}^{2} \otimes K_{B}$ we have the exact sequence

$$
\begin{equation*}
\left.\left.\left.0 \rightarrow L^{2} \otimes \mathcal{O}(-R)\right|_{C \cap \sigma_{\tau}} \rightarrow L^{2}\right|_{\tau C \cap C} \rightarrow L^{2}\right|_{D^{\prime}} \rightarrow 0 \tag{3.45}
\end{equation*}
$$

implying the corresponding long exact sequence in cohomology. We now have to split each appearing cohomology group into its τ symmetric and anti-symmetric component. Clearly, the fixed point locus $C \cap \sigma_{\tau}$ contributes entirely to the cohomology of $\mathbf{S}^{2} V$ since we have just identified it with the points $i=j$ appearing in (3.41). Thus

$$
\begin{equation*}
H_{+}^{i}\left(C \cap \sigma_{\tau}, L^{2}\right)=H^{i}\left(C \cap \sigma_{\tau}, L^{2}\right), \quad H_{-}^{i}\left(C \cap \sigma_{\tau}, L^{2}\right)=0 \tag{3.46}
\end{equation*}
$$

This is consistent with the orientifold dual, where the fixed point locus of the involution only contributes to anti-symmetric matter and therefore to $H^{i}\left(X, \mathbf{S}^{2} V\right)$. Therefore, we can conclude that

$$
\begin{equation*}
H^{i+1}\left(X, \bigwedge^{2} V\right)=H_{-}^{i}\left(D^{\prime}, L^{2}\right) \tag{3.47}
\end{equation*}
$$

and that $H^{i+1}\left(X, \mathbf{S}^{2} V\right)$ must be determined from the exact sequence

What remains is to determine $H_{ \pm}^{i}\left(D^{\prime}, L^{2}\right)$.
To obtain a numerical tool for the computation of this splitting recall from the previous section that

$$
\begin{equation*}
H^{i}\left(X, \bigwedge^{2} V\right)=H^{i-1}\left(c_{\wedge^{2} V},\left.\mathcal{N}_{\wedge^{2} V} \otimes K_{B}\right|_{c_{\wedge^{2} V}}\right), i=1,2 \tag{3.49}
\end{equation*}
$$

where $c_{\wedge^{2} V}$ denotes the intersection of the spectral cover of $\Lambda^{2} V$ with σ and $\mathcal{N}_{\wedge^{2} V}$ its spectral rank one sheaf. It is important to realize that the surjective map $\pi_{D^{\prime}}: D^{\prime} \rightarrow c_{\wedge^{2} V}$, which is generically two-to-one, factors through

Here D^{\prime} / τ is the normalization of $c_{\wedge^{2} V}$. The canonical bundle of D^{\prime} has degree $C(C-$ $\left.\sigma_{\tau}\right)\left(2 C-\sigma_{\tau}\right)$ and is related to the canonical bundle of D^{\prime} / τ by

$$
\begin{equation*}
m^{*} K_{D^{\prime} / \tau}=K_{D^{\prime}} \otimes \mathcal{O}_{D^{\prime}}(-R) \tag{3.51}
\end{equation*}
$$

where R is the ramification divisor ($\overline{3.44}$). In particular,

$$
\begin{equation*}
\left.c_{1}\left(K_{D^{\prime} / \tau}\right)\right|_{D^{\prime} / \tau}=\frac{1}{2}\left(C\left(C-\sigma_{\tau}\right)\left(2 C-\sigma_{\tau}\right)-R\right) \tag{3.52}
\end{equation*}
$$

Applying m_{*} to L^{2}, we obtain a rank two vector bundle on D^{\prime} / τ which splits into a sum of line bundles

$$
\begin{equation*}
m_{*} L^{2}=L_{i} \oplus L_{a} \tag{3.53}
\end{equation*}
$$

The sections of L_{i} and L_{a} are invariant and anti-invariant under τ, respectively. In particular,

$$
\begin{equation*}
m^{*} L_{i}=L^{2} \tag{3.54}
\end{equation*}
$$

and

$$
\begin{equation*}
H^{i}\left(D^{\prime}, L^{2}\right)=H^{i}\left(D^{\prime}, m^{*} L_{i}\right) \tag{3.55}
\end{equation*}
$$

Therefore, in oder to compute the anti-invariant part of the cohomology of L^{2} we have to compute $H^{i}\left(D^{\prime} / \tau, L_{a}\right)$. Clearly, at generic points $n_{*} L_{a}=\mathcal{N}_{c_{\wedge^{2} V}} \otimes K_{B}$, which we expect to hold everywhere. Using GRR for the map m, we find that

$$
\begin{equation*}
\left.c_{1}\left(L_{a}\right)\right|_{D^{\prime} / \tau}=\left.c_{1}\left(\mathcal{N} \otimes K_{B}^{1 / 2}\right)\right|_{D^{\prime}}+R / 2 \tag{3.56}
\end{equation*}
$$

Note that, since $\left.\pi^{*} K_{B}\right|_{D^{\prime}}$ is invariant under τ, it is the pull-back of a bundle $K_{B}^{1 / 2}$ on D^{\prime} / τ.
Let us summarize our final formulas for the cohomology groups of the anti-symmetric and symmetric product bundles.

- $H^{i}\left(X, \wedge^{2} V\right)$

The non-vanishing cohomology groups of the bundle $\bigwedge^{2} V$ can be computed from the cohomology groups of a line bundle L_{a} on the quotient D^{\prime} / τ by

$$
H^{i+1}\left(X, \bigwedge^{2} V\right)=H_{-}^{i}\left(D^{\prime}, L^{2}\right)=H^{i}\left(D^{\prime} / \tau, L_{a}\right), \quad \text { for } i=0,1
$$

with the first Chern class of L_{a} given by

$$
\begin{equation*}
\left.c_{1}\left(L_{a}\right)\right|_{D^{\prime} / \tau}=\left.c_{1}\left(\mathcal{N} \otimes K_{B}^{1 / 2}\right)\right|_{D^{\prime}}+R / 2 \tag{3.57}
\end{equation*}
$$

Applying the RRH theorem to this line bundle we find

$$
\begin{equation*}
-\chi\left(X, \bigwedge^{2} V\right)=\left.c_{1}\left(\mathcal{N} \otimes K_{B}^{1 / 2}\right)\right|_{D^{\prime}}-\frac{1}{2} C \cdot C \cdot\left(C-\sigma_{\tau}\right) \tag{3.58}
\end{equation*}
$$

an important consistency check of our computation.

- $H^{i}\left(X, \mathbf{S}^{2} V\right)$

The non-vanishing cohomology groups of the bundle $\mathbf{S}^{2} V$,

$$
\begin{equation*}
H^{i+1}\left(X, \mathbf{S}^{2} V\right)=H_{+}^{i}\left(\tau C \cap C, L^{2}\right) \tag{3.59}
\end{equation*}
$$

can be computed from the sequence (3.48) with

$$
H_{+}^{i}\left(D^{\prime}, L^{2}\right)=H^{i}\left(D^{\prime} / \tau, L_{i}\right), \quad \text { for } i=0,1
$$

and the first Chern class of L_{i} is given by

$$
\begin{equation*}
\left.c_{1}\left(L_{i}\right)\right|_{D^{\prime} / \tau}=\left.c_{1}\left(\mathcal{N} \otimes K_{B}^{1 / 2}\right)\right|_{D^{\prime}} \tag{3.60}
\end{equation*}
$$

In particular, this implies together with the sequence (3.48) that $-\chi\left(X, \mathbf{S}^{2} V\right)=$ $\chi\left(C \cap \sigma_{\tau}, L^{2} \otimes \mathcal{O}(-R)\right)+\chi_{+}\left(D^{\prime}, L^{2}\right)$, and again the RRH theorem consistently gives

$$
\begin{equation*}
-\chi\left(X, \mathbf{S}^{2} V\right)=\left.c_{1}\left(\mathcal{N} \otimes K_{B}^{1 / 2}\right)\right|_{\tau C \cap C}-\frac{1}{2} C \cdot C \cdot\left(C+\sigma_{\tau}\right) \tag{3.61}
\end{equation*}
$$

4. Heterotic flipped SU(5) GUT models

Having presented the mathematical framework for the computation of the complete massless spectrum of heterotic string compactification with $\mathrm{U}(N)$ bundles, we are now in a position to apply these techniques to heterotic model building. After briefly summarizing the way flipped $\operatorname{SU}(5)$ vacua were obtained in (14 we present a new fully consistent threegeneration string vacuum. For this phenomenologically promising model, we exemplify the methods developed in the first part of this paper and compute the complete massless spectrum.

4.1 $\mathrm{SU}(4) \times \mathrm{U}(1)$ bundles

We consider a bundle with structure group $\mathrm{SU}(4) \times \mathrm{U}(1)$ on a Calabi-Yau X including cases with $\pi_{1}(X)=0$. Such types of construction were considered in 41 before and further details of this particular one can be found in (12, (14). ${ }^{8}$

More precisely, our starting point is the direct sum

$$
\begin{equation*}
W_{1}=V_{1} \oplus L^{-1} \quad \text { with } c_{1}\left(V_{1}\right)=c_{1}(L), \operatorname{rank}(V)=4, \tag{4.1}
\end{equation*}
$$

where V_{1} is $\mathrm{U}(4)$ vector bundle, L is a complex line bundle and the structure group of W_{1} is $G_{1}=\mathrm{SU}(4) \times \mathrm{U}(1)$ due to the constraint $c_{1}\left(V_{1}\right)=c_{1}(L)$. G_{1} can now be embedded into an $\mathrm{SU}(5)$ subgroup of the first E_{8} such that its commutant in E_{8} is $\mathrm{SU}(5) \times \mathrm{U}(1)_{1}$. For the details of embeddings of this type we refer to [12, 37. The decomposition of the adjoint 248 of E_{8},

$$
\mathbf{2 4 8} \xrightarrow{\mathrm{SU}(4) \times \mathrm{SU}(5) \times \mathrm{U}(1)_{1}}\left\{\begin{array}{c}
(\mathbf{1 5}, \mathbf{1})_{0} \tag{4.2}\\
(\mathbf{1}, \mathbf{1})_{0}+(\mathbf{1}, \mathbf{1 0})_{-4}+(\mathbf{1}, \overline{\mathbf{1 0}})_{4}+(\mathbf{1}, \mathbf{2 4})_{0} \\
(\mathbf{4}, \mathbf{1})_{5}+(\mathbf{4}, \overline{\mathbf{5}})_{-3}+(\mathbf{4}, \mathbf{1 0})_{1} \\
(\overline{\mathbf{4}}, \mathbf{1})_{-5}+(\overline{\mathbf{4}}, \mathbf{5})_{3}+(\overline{\mathbf{4}}, \overline{\mathbf{1 0}})_{-1} \\
(\mathbf{6}, \mathbf{5})_{-2}+(\mathbf{6}, \overline{\mathbf{5}})_{2}
\end{array}\right\},
$$

reveals that the spectrum is precisely that of flipped $\mathrm{SU}(5) \times \mathrm{U}(1)_{X} \quad 18$ provided we guarantee that the abelian gauge group remains massless in the process of Green-Schwarz type anomaly cancellation.

In (14) it was proposed to embed a second line bundle into the other E_{8} such that a linear combination of the two observable $\mathrm{U}(1)$'s remains massless. It turns out, however, that in order to construct models with precisely the Standard Model matter content and no further non-chiral matter, it is more convenient to invoke in the hidden E_{8} a slightly more sophisticated structure than the one detailed in [14]. Namely, we can consider the second simplest embedding

$$
\begin{equation*}
\mathrm{U}(2) \times \mathrm{U}(1) \subset E_{8} \rightarrow E_{6} \times \mathrm{U}(1)_{2} \tag{4.3}
\end{equation*}
$$

[^7]| $E_{6} \times \mathrm{U}(1)_{2}$ | cohomology |
| :---: | :---: |
| $\mathbf{1}_{3}$ | $V_{2} \otimes L$ |
| $\mathbf{2 7}_{1}$ | V_{2} |
| $\mathbf{2 7}_{-2}$ | L^{-1} |

Table 2: Massless spectrum of $H=E_{6} \times \mathrm{U}(1)_{2}$ models.
inducing the decomposition

$$
\mathbf{2 4 8} \xrightarrow{\mathrm{SU}(2) \times E_{6} \times \mathrm{U}(1)_{2}}\left\{\begin{array}{c}
(\mathbf{1}, \mathbf{7 8})_{0} \tag{4.4}\\
(\mathbf{1}, \mathbf{1})_{0}+(\mathbf{3}, \mathbf{1})_{0}+(\mathbf{2}, \mathbf{1})_{3}+(\mathbf{2}, \mathbf{1})_{-3} \\
(\mathbf{2}, \mathbf{2 7})_{1}+(\mathbf{1}, \mathbf{2 7})_{-2} \\
(\mathbf{2}, \overline{\mathbf{2 7}})_{-1}+(\mathbf{1}, \overline{\mathbf{2 7}})_{2}
\end{array}\right\} .
$$

The bundle we embed into the second E_{8} is of the form

$$
\begin{equation*}
W_{2}=V_{2} \oplus L^{-1}, \quad c_{1}\left(V_{2}\right)=c_{1}(L) \tag{4.5}
\end{equation*}
$$

where we stress that the line bundle L is the same as the one appearing in (4.1). The resulting chiral spectrum in the second E_{8} is counted by the cohomology groups listed in table 2.

The unitary vector bundles V_{1}, V_{2} and the complex line bundle L are subject to a number of constraints to guarantee that the model constitutes a well-defined string vacuum with the desired spectrum. The non-trivial Bianchi identity for the three-form field strength ensuring anomaly cancellation translates into the following cohomological constraint on the second Chern classes of the vector bundles and the tangent bundle of the Calabi-Yau,

$$
\begin{equation*}
\operatorname{ch}_{2}\left(V_{1}\right)+\operatorname{ch}_{2}\left(V_{2}\right)+c_{1}^{2}(L)-\sum_{a} N_{a} \bar{\gamma}_{a}=-c_{2}(X) \tag{4.6}
\end{equation*}
$$

Here we allowed for the presence of stacks of N_{a} space-time-filling five-branes wrapping the holomorphic two-cycles Γ_{a} dual to the four-form $\bar{\gamma}_{a}$ on X.

According to the reasoning detailed in (14], the combination

$$
\begin{equation*}
\mathrm{U}(1)_{f}=-\frac{1}{2}\left(\mathrm{U}(1)_{1}-\frac{5}{3} \mathrm{U}(1)_{2}\right) \tag{4.7}
\end{equation*}
$$

remains massless if the following conditions are satisfied

$$
\begin{align*}
\int_{X} c_{1}(L) \wedge c_{2}\left(V_{1}\right) & =0 \\
\int_{X} c_{1}(L) \wedge c_{2}\left(V_{2}\right) & =0 \\
\int_{\Gamma_{a}} c_{1}(L) & =0 \quad \text { for all M5 branes. } \tag{4.8}
\end{align*}
$$

$\mathrm{SU}(5) \times \mathrm{U}(1)_{X} \times E_{6}$	Cohomology	χ	SM part.
$(\mathbf{1 0}, \mathbf{1})_{\frac{1}{2}}$	$H^{i}\left(V_{1}\right)$	g	$\left(q_{L}, d_{R}^{c}, \nu_{R}^{c}\right)+\left[H_{10}+\bar{H}_{10}\right]$
$(\mathbf{1 0}, \mathbf{1})_{-2}$	$H^{i}\left(L^{-1}\right)$	0	-
$(\overline{\mathbf{5}}, \mathbf{1})_{-\frac{3}{2}}$	$H^{i}\left(V_{1} \otimes L^{-1}\right)$	g	$\left(u_{R}^{c}, l_{L}\right)$
$(\overline{\mathbf{5}}, \mathbf{1})_{1}$	$H^{i}\left(\bigwedge^{2} V_{1}\right)$	0	$\left[\left(h_{3}, h_{2}\right)+\left(\bar{h}_{3}, \bar{h}_{2}\right)\right]$
$(\mathbf{1}, \mathbf{1})_{\frac{5}{2}}$	$H^{i}\left(V_{1} \otimes L\right)+H^{i}\left(V_{2}^{\vee} \otimes L^{-1}\right)$	g	e_{R}^{c}
$(\mathbf{1}, \mathbf{2 7})_{\frac{5}{6}}$	$H^{i}\left(V_{2}\right)$	0	-
$(\mathbf{1}, \mathbf{2 7})_{-\frac{5}{3}}$	$H^{i}\left(L^{-1}\right)$	0	-

Table 3: Massless spectrum of $H=\mathrm{SU}(5) \times \mathrm{U}(1)_{X}$ models with hidden E_{6} symmetry; $g=$ $\frac{1}{2} \int_{X} c_{3}\left(V_{1}\right)$.

In this case, the one-loop correction (2.43) to the slope vanishes and we are in the fortunate situation of (2.44), i.e. that μ-stability of V_{1} and V_{2}, together with the DUY condition (2.39), guarantees supersymmetry in the perturbative regime.

Chiral right-handed electrons from the second E_{8} with non-MSSM Yukawa couplings are absent if in addition

$$
\begin{equation*}
\int_{X} c_{1}^{3}(L)=0 \tag{4.9}
\end{equation*}
$$

In this case one obtains no chiral matter at all resulting from the hidden E_{8}. The complete spectrum can be found in table 3 .

Whereas the net number of chiral generations is simply given by $\frac{1}{2} \int_{X} c_{3}\left(V_{1}\right)$ once the constraints (4.6), (4.8), (4.9) are satisfied, the vector-like matter is described by the cohomology groups listed in table 3. Our task is therefore to find stable vector $U(4)$ and $\mathrm{U}(2)$ bundles V_{1} and V_{2} as well as a line bundle L subject to the constraints discussed such that

- $H^{*}\left(X, V_{1}\right)=(0,1,4,0)$ for precisley one pair of GUT Higgs and 3 generations of $\left(q_{L}, d_{R}^{c}, \nu_{R}^{c}\right)$,
- $H^{*}\left(X, V_{1} \otimes L^{-1}\right)=(0,0,3,0)$ for 3 generations of $\left(u_{R}^{c}, l_{L}\right)$,
- $H^{*}\left(X, V_{1} \otimes L\right)=(0,0,3,0)$ for 3 generations of e_{R}^{c} and
- $H^{*}\left(X, L^{-1}\right)=H^{*}\left(X, V_{2}\right)=(0,0,0,0)=H^{*}\left(X, V_{2} \otimes L\right)$ in order to avoid all kinds of non-chiral exotic matter.

The number of Higgs pairs is then determined by $H^{*}\left(X, \bigwedge^{2} V_{1}\right)$.

4.2 A three-generation model from extensions

We now provide an example of the flipped $\mathrm{SU}(5)$ framework whose spectrum comes remarkably close to the Standard Model. Our Calabi-Yau manifold X is elliptically fibered over the basis B, which we take to be $\mathrm{d} P_{4}$.

Let us start with the visible E_{8}, into which we embed the direct sum $W_{1}=V_{1} \oplus L^{-1}$ of a stable $\mathrm{U}(4)$ bundle V_{1} and the line bundle L with $c_{1}\left(V_{1}\right)=c_{1}(L)$. For L we choose the pull-back of a line bundle on dP_{4} with first Chern class

$$
\begin{equation*}
c_{1}(L)=-E_{1}+E_{4} \tag{4.10}
\end{equation*}
$$

Since L is the pull-back of a line bundle on the base space, clearly

$$
\begin{equation*}
\int_{X} c_{1}(L)^{3}=0 \tag{4.11}
\end{equation*}
$$

and we therefore have no further contributions to the right-handed electrons.
V_{1} is constructed as the extension of two stable $\mathrm{U}(2)$ bundles V_{a} and V_{b},

$$
\begin{equation*}
0 \rightarrow V_{a} \rightarrow V_{1} \rightarrow V_{b} \rightarrow 0 \tag{4.12}
\end{equation*}
$$

where V_{a} and V_{b} are obtained via the spectral cover construction. Concretely, the defining data is in the notation of section 2

$$
\begin{array}{lr}
\lambda_{a}=0, c_{1}(\zeta)_{a}=l-2 E_{2}, & \eta_{a}=12 l-5 E_{1}-5 E_{2}-3 E_{3}-5 E_{4} \\
\lambda_{b}=0, c_{1}(\zeta)_{b}=-l-E_{1}+2 E_{2}+E_{4}, \eta_{b}=10 l-4 E_{1}-E_{2}-3 E_{3}-4 E_{4}
\end{array}
$$

Clearly $c_{1}\left(V_{1}\right)=c_{1}\left(V_{a}\right)+c_{1}\left(V_{b}\right)=-E_{1}+E_{4}=c_{1}(L)$, as required.
In the hidden E_{8} we embed $W_{2}=V_{2} \oplus L^{-1}$, where the $\mathrm{U}(2)$ bundle V_{2} is given by the data

$$
\begin{equation*}
\lambda_{2}=0, \quad c_{1}(\zeta)_{2}=-E_{1}+E_{4}, \quad \eta_{2}=7 l-2 E_{1}-3 E_{2}-3 E_{3}-2 E_{4} \tag{4.13}
\end{equation*}
$$

again satisfying $c_{1}\left(V_{2}\right)=c_{1}(L)$. One can check that each of the bundles V_{a}, V_{b} and V_{2} are stable in that they satisfy the corresponding criteria described in section 2.2 .

Proof of stability. We now prove stability of the bundle V_{1} defined via the extension (4.12). As discussed in section 2.5 and in appendix A, this amounts to showing that the extension is non-split and that $\mu\left(V_{a}\right)<\mu\left(V_{1}\right)=0$ for a Kähler class inside the Kähler cone. Starting with this latter constraint, we parameterise the Kähler form J on X as $J=\ell_{s}^{2}\left(r_{\sigma} \sigma+\pi^{*}\left(r_{0} l+\sum_{i=1}^{4} r_{i} E_{i}\right)\right)$. Note that r_{σ} measures the area of the fibre. The values for r_{σ}, r_{0} and r_{i} have to be such that J lies inside the Kähler cone. For the numerical constraints following from this requirement we refer e.g. to appendix A of 33. One may check that they are satisfied for the choice

$$
\begin{equation*}
0<r_{\sigma}<4 \rho, \quad r_{0}=6 \rho, \quad r_{1}=-2 \rho, \quad r_{2}=-3 \rho, \quad r_{3}=-2 \rho, \quad r_{4}=-2 \rho \tag{4.14}
\end{equation*}
$$

where $\rho>0$. Note that for this choice, the DUY-condition (2.39) for V_{1} and V_{2} is fulfilled and therefore $\mu\left(V_{1,2}\right)=0$. Stability of each of the bundles V_{a}, V_{b} and V_{2} requires furthermore that $r_{\sigma}<\epsilon$ for some (in general unknown) critical value of ϵ. With the help of the intersection form on the basis we readily compute that

$$
\begin{equation*}
\int_{X} J \wedge J \wedge c_{1}\left(V_{a}\right)=\ell_{s}^{4}\left(-r_{\sigma}^{2}+2 r_{\sigma}\left(r_{0}+2 r_{2}\right)\right) . \tag{4.15}
\end{equation*}
$$

Restricting oneself for simplicity to the parameter space in (4.14) one concludes that $\mu\left(V_{a}\right)<0$ translates into

$$
\begin{equation*}
r_{\sigma}^{2}>0 \tag{4.16}
\end{equation*}
$$

which is always true. Most importantly, stability of V_{1} does therefore not set a lower bound on r_{σ} so that we can indeed take it smaller than any critical ϵ required by the spectral cover construction.

The second part of the stability condition on V_{1} requires the computation of $H^{1}\left(X, V_{a} \otimes\right.$ $\left.V_{b}^{\vee}\right)$. According to equation (3.25), $H^{i}\left(X, V_{a} \otimes V_{b}^{\vee}\right)=H^{i-1}\left(C_{a} \cap C_{b},\left.\mathcal{L}\right|_{C_{a} \cap C_{b}}\right)$ for $i=1,2$, where $\mathcal{L}=\mathcal{N}_{V_{a}} \otimes \mathcal{N}_{V_{b}} \otimes K_{B}$. As discussed in appendix C, we have to invoke a series of three Koszul sequences in which four line bundles on X appear: $\mathcal{L}, \mathcal{L} \otimes \mathcal{O}\left(-\mathcal{C}_{a}\right), \mathcal{L} \otimes$ $\mathcal{O}\left(-\mathcal{C}_{b}\right), \mathcal{L} \otimes \mathcal{O}\left(-\mathcal{C}_{a}-\mathcal{C}_{b}\right)$. Their cohomology groups are easily determined once we know their first Chern classes. From the definition of the spectral line bundle (2.24) and the concrete bundle data we find

$$
\begin{align*}
& c_{1}\left(\mathcal{N}_{V_{a}}\right)=\sigma+\pi_{C}^{*}\left(\frac{1}{2}\left(\eta_{a}+c_{1}(B)\right)+\frac{1}{n} c_{1}(\zeta)_{a}\right), \\
& c_{1}\left(\mathcal{N}_{V_{b}^{\vee}}\right)=\sigma+\pi_{C}^{*}\left(\frac{1}{2}\left(\eta_{b}+c_{1}(B)\right)-\frac{1}{n} c_{1}(\zeta)_{b}\right) . \tag{4.17}
\end{align*}
$$

Thus,

$$
\begin{align*}
c_{1}(\mathcal{L}) & =2 \sigma+\pi_{C}^{*}\left(12 l-4 E_{1}-5 E_{2}-3 E_{3}-5 E_{4}\right), \\
c_{1}\left(\mathcal{L} \otimes \mathcal{O}\left(-\mathcal{C}_{a}\right)\right) & =\pi_{C}^{*}\left(E_{1}\right), \\
c_{1}\left(\mathcal{L} \otimes \mathcal{O}\left(-\mathcal{C}_{b}\right)\right) & =\pi_{C}^{*}\left(2 l-4 E_{2}-E_{4}\right), \\
c_{1}\left(\mathcal{L} \otimes \mathcal{O}\left(-\mathcal{C}_{a}-\mathcal{C}_{b}\right)\right) & =-2 \sigma+\pi_{C}^{*}\left(-10 l+5 E_{1}+E_{2}+3 E_{3}+4 E_{4}\right) \tag{4.18}
\end{align*}
$$

with Hodge numbers

$$
\begin{align*}
& H^{*}(X, \mathcal{L})=(57,0,0,0), \\
& H^{*}\left(X, \mathcal{L} \otimes \mathcal{O}\left(-\mathcal{C}_{a}\right)\right)=(1,0,0,0), \\
& H^{*}\left(X, \mathcal{L} \otimes \mathcal{O}\left(-\mathcal{C}_{b}\right)\right)=(0,5,6,0), \\
& H^{*}\left(X, \mathcal{L} \otimes \mathcal{O}\left(-\mathcal{C}_{a}-\mathcal{C}_{b}\right)\right)=(0,0,0,39) . \tag{4.19}
\end{align*}
$$

In all we find

$$
\begin{equation*}
H^{*}\left(X, V_{a} \otimes V_{b}^{\vee}\right)=(0,61,45,0) \tag{4.20}
\end{equation*}
$$

and therefore the extension is non-split. This completes the proof of stability of V_{1}.

Checking the consistency conditions. In section 2.2, we listed the Chern characters for spectral cover bundles (see (2.26)). The result for the two vector bundles V_{a} and V_{b} in this example is

$$
\begin{align*}
& \operatorname{ch}_{1}\left(V_{a}\right)=l-2 E_{2} \\
& \operatorname{ch}_{2}\left(V_{a}\right)=\sigma \pi^{*}\left(-12 l+5 E_{1}+5 E_{2}+3 E_{3}+5 E_{4}\right)+\frac{13}{2} F \\
& \operatorname{ch}_{3}\left(V_{a}\right)=-1 \tag{4.21}\\
& \operatorname{ch}_{1}\left(V_{b}\right)=-l-E_{1}+2 E_{2}+E_{4} \\
& \operatorname{ch}_{2}\left(V_{b}\right)=\sigma \pi^{*}\left(-10 l+4 E_{1}+1 E_{2}+3 E_{3}+4 E_{4}\right)+\frac{11}{2} F \\
& \operatorname{ch}_{3}\left(V_{b}\right)=4 \tag{4.22}
\end{align*}
$$

V_{1} being the extension of V_{b} by V_{a} its total Chern character is the sum of the total Chern characters of V_{a} and V_{b}. Thus,

$$
\begin{align*}
& \operatorname{ch}_{1}\left(V_{1}\right)=-E_{1}+E_{4} \\
& \operatorname{ch}_{2}\left(V_{1}\right)=\sigma \pi^{*}\left(-22 l+9 E_{1}+6 E_{2}+6 E_{3}+9 E_{4}\right)+12 F \\
& \operatorname{ch}_{3}\left(V_{1}\right)=3 \tag{4.23}
\end{align*}
$$

The Chern classes are then

$$
\begin{align*}
& c_{1}\left(V_{1}\right)=-E_{1}+E_{4} \\
& c_{2}\left(V_{1}\right)=\sigma \pi^{*}\left(22 l-9 E_{1}-6 E_{2}-6 E_{3}-9 E_{4}\right)-13 F \\
& c_{3}\left(V_{1}\right)=6 \tag{4.24}
\end{align*}
$$

From the second Chern class, one can easily read off that the first line of the masslessness conditions (4.8) holds.

For the $\mathrm{U}(2)$-bundle in the hidden E_{8}, V_{2}, the Chern characters come out to be

$$
\begin{align*}
& \operatorname{ch}_{1}\left(V_{2}\right)=-E_{1}+E_{4} \\
& \operatorname{ch}_{2}\left(V_{2}\right)=\sigma \pi^{*}\left(-7 l+2 E_{1}+3 E_{2}+3 E_{3}+2 E_{4}\right)+F, \\
& \operatorname{ch}_{3}\left(V_{2}\right)=0 \tag{4.25}
\end{align*}
$$

To satisfy the tadpole condition (4.6), the Poincaré dual four-form of the two-cycles, the five-branes are wrapping must be:

$$
\begin{align*}
\sum_{a} N_{a} \overline{\gamma_{a}} & =\operatorname{ch}_{2}\left(V_{1}\right)+\operatorname{ch}_{2}\left(V_{2}\right)+c_{1}(L)^{2}+c_{2}(X) \\
& =\sigma \pi^{*}\left(7 l-E_{1}-3 E_{2}-3 E_{3}-E_{4}\right)+73 F \tag{4.26}
\end{align*}
$$

This can be decomposed in a sum of positive multiples of irreducible cycles, for example:
With this decomposition, it is easy to see that the second line in equation (4.8)

$$
\begin{equation*}
\int_{\Gamma_{a}} c_{1}(L)=\int_{X} c_{1}(L) \wedge \overline{\gamma_{a}}=0 \tag{4.27}
\end{equation*}
$$

indeed holds for all components.

a	N_{a}	$\overline{\gamma_{a}}$
1	1	$\sigma \pi^{*}\left(l-E_{1}-E_{4}\right)$
2	6	$\sigma \pi^{*}\left(l-E_{2}-E_{3}\right)$
3	3	$\sigma \pi^{*}\left(E_{2}\right)$
4	3	$\sigma \pi^{*}\left(E_{3}\right)$
5	73	F

Computation of the massless spectrum. As mentioned in section 2.4, we can calculate the cohomology groups $H^{*}\left(X, V_{1}\right)$ by the long exact sequence in cohomology, induced by (4.12):

$$
\begin{align*}
0 & \rightarrow H^{0}\left(X, V_{a}\right) \rightarrow H^{0}\left(X, V_{1}\right) \rightarrow H^{0}\left(X, V_{b}\right) \rightarrow \\
& \rightarrow H^{1}\left(X, V_{a}\right) \rightarrow H^{1}\left(X, V_{1}\right) \rightarrow H^{1}\left(X, V_{b}\right) \rightarrow \ldots \tag{4.28}
\end{align*}
$$

For the cohomology groups $H^{*}\left(X, V_{a}\right)$ and $H^{*}\left(X, V_{b}\right)$, one can use again the method described in section 3.2 by considering the tensor product with the trivial vector bundle \mathcal{O}_{X} respectively. The results are

$$
\begin{align*}
H^{*}\left(X, V_{a}\right) & =H^{*}\left(X, V_{a} \otimes \mathcal{O}_{X}\right)=(0,1,1,0) \\
H^{*}\left(X, V_{b}\right) & =H^{*}\left(X, V_{b} \otimes \mathcal{O}_{X}\right)=(0,0,3,0) \tag{4.29}
\end{align*}
$$

and therefore

$$
\begin{equation*}
H^{*}\left(X, V_{1}\right)=(0,1,4,0) \tag{4.30}
\end{equation*}
$$

The exact sequence from the extension (4.12) remains exact upon tensoring every element with a line bundle. Thus, we can calculate the cohomology groups $H^{*}\left(X, V_{1} \otimes L\right)$ and $H^{*}\left(X, V_{1} \otimes L^{-1}\right)$ by the long exact sequence in cohomology, induced by the tensored short exact sequence. We find

$$
\begin{align*}
H^{*}\left(X, V_{a} \otimes L\right) & =(0,0,0,0), \\
H^{*}\left(X, V_{a} \otimes L^{-1}\right) & =(0,0,0,0), \\
H^{*}\left(X, V_{b} \otimes L\right) & =(0,0,3,0), \\
H^{*}\left(X, V_{b} \otimes L^{-1}\right) & =(0,0,3,0), \tag{4.31}
\end{align*}
$$

yielding

$$
\begin{align*}
H^{*}\left(X, V_{1} \otimes L\right) & =(0,0,3,0), \\
H^{*}\left(X, V_{1} \otimes L^{-1}\right) & =(0,0,3,0) \tag{4.32}
\end{align*}
$$

For the computation of the cohomology groups $H^{*}\left(X, V_{1}\right)$, we use that the short exact sequence (2.34) induces the following set of exact sequences

$$
\begin{aligned}
& \begin{array}{cc}
0 & 0 \\
0 \rightarrow \bigwedge^{2} V_{a} \rightarrow Q_{1} \rightarrow V_{a} \otimes V_{b} \rightarrow 0
\end{array} \\
& 0 \rightarrow \bigwedge^{2} V_{a} \rightarrow \bigwedge^{2} V_{1} \rightarrow Q_{2} \rightarrow 0 \\
& \stackrel{\downarrow}{\Lambda^{2} V_{b}} \quad \stackrel{\downarrow}{\Lambda^{2}} V_{b} \\
& \begin{array}{ll}
\downarrow & \downarrow \\
0 & 0
\end{array}
\end{aligned}
$$

Since V_{a} and V_{b} are bundles of rank 2, their anti-symmetric product is actually a line bundle and its cohomology can be computed using the method described in section 3.1. The result is

$$
\begin{align*}
H^{*}\left(X, \bigwedge^{2} V_{a}\right) & =(0,0,1,0) \\
H^{*}\left(X, \bigwedge^{2} V_{b}\right) & =(0,2,1,0) \tag{4.34}\\
H^{*}\left(X, V_{a} \otimes V_{b}\right) & =(0,53-\operatorname{rk} f, 53-\operatorname{rk} f, 0)
\end{align*}
$$

where f is the map $f: H^{1}\left(X,\left.\mathcal{L} \otimes \mathcal{O}\left(-\mathcal{C}_{a}\right)\right|_{\mathcal{C}_{b}}\right) \rightarrow H^{1}\left(X,\left.\mathcal{L}\right|_{\mathcal{C}_{b}}\right)$ appearing in the Koszul sequences. These spaces are both one-dimensional, so f might in principle have rank 0 or 1. Resolving the various induced long exact sequences in cohomology in (4.33) gives

$$
\begin{align*}
H^{*}\left(X, Q_{1}\right) & =(0,53-\operatorname{rk} f-\operatorname{rk} g, 54-\operatorname{rk} f-\operatorname{rk} g, 0) \\
H^{*}\left(X, Q_{2}\right) & =(0,55-\operatorname{rk} f-\operatorname{rk} h, 54-\operatorname{rk} f-\operatorname{rk} h, 0) \tag{4.35}
\end{align*}
$$

where g and h are the maps $g: H^{1}\left(X, V_{a} \otimes V_{b}\right) \rightarrow H^{2}\left(X, \wedge^{2} V_{a}\right), h: H^{1}\left(X, \wedge^{2} V_{b}\right) \rightarrow$ $H^{2}\left(X, V_{a} \otimes V_{b}\right)$. From the dimensions of their image and domain, (4.34), one can read off that their ranks can at most lie in the ranges $[0,1]$ and $[0,2]$ respectively. Using these results, the exact sequence for $\bigwedge^{2} V_{1}$ gives

$$
\begin{equation*}
H^{*}\left(X, \bigwedge^{2} V_{1}\right)=(0,55-\mathrm{rk} f-\mathrm{rk} g-\mathrm{rk} i, 55-\mathrm{rk} f-\mathrm{rk} g-\mathrm{rk} i, 0) \tag{4.36}
\end{equation*}
$$

where the rank of $i: H^{1}\left(X, Q_{1}\right) \rightarrow H^{2}\left(X, V_{a} \otimes V_{b}\right)$ can be in the range [0,2]. Thus we have at least $H^{*}\left(X, \bigwedge^{2} V_{1}\right)=(0,51,51,0)$.

In the hidden sector, the cohomology is

$$
\begin{align*}
H^{*}\left(X, V_{2}\right) & =(0,0,0,0) \\
H^{*}\left(X, V_{2}^{\vee} \otimes L^{-1}\right) & =(0,2-\mathrm{rk} j, 2-\mathrm{rk} j, 0) \tag{4.37}
\end{align*}
$$

where the rank of $j: H^{1}\left(\sigma,\left.\mathcal{N}_{V_{2}} \otimes K_{B} \otimes \mathcal{O}(-C)\right|_{\sigma}\right) \rightarrow H^{1}\left(\sigma,\left.\mathcal{N}_{V_{2}} \otimes K_{B}\right|_{\sigma}\right)$ can again lie at most within the range $[0,2]$.

A remark about the actual ranks of the linear maps f, g, h, i, j is in order. Their concrete value depends on the choice of bundle moduli and can therefore vary over the

$\mathrm{SU}(5) \times \mathrm{U}(1)_{X} \times E_{6}$	Cohomology	χ	SM part.
$(\mathbf{1 0}, \mathbf{1})_{\frac{1}{2}}$	$(0,1,4,0)$	3	$\left(q_{L}, d_{R}^{c}, \nu_{R}^{c}\right)+\left[H_{10}+\bar{H}_{10}\right]$
$(\mathbf{1 0}, \mathbf{1})_{-2}$	$(0,0,0,0)$	0	-
$(\overline{\mathbf{5}}, \mathbf{1})_{-\frac{3}{2}}$	$(0,0,3,0)$	3	$\left(u_{R}^{c}, l_{L}\right)$
$\left(\overline{\mathbf{5}, \mathbf{1})_{1}}\right.$	$(0,[51,55],[51,55], 0)$	0	$\left[\left(h_{3}, h_{2}\right)+\left(\bar{h}_{3}, \bar{h}_{2}\right)\right]$
$(\mathbf{1}, \mathbf{1})_{\frac{5}{2}}$	$(0,0,3,0)$	3	e_{R}^{c}
$(\mathbf{1}, \mathbf{2 7})_{\frac{5}{6}}$	$(0,0,0,0)$	0	-
$(\mathbf{1}, \mathbf{2 7})_{-\frac{5}{3}}$	$(0,0,0,0)$	0	-

Table 4: Massless spectrum of a flipped $\operatorname{SU}(5)$ model with hidden E_{6} symmetry.
moduli space. To decide which values they can really take within the naive ranges stated above requires a more thorough analysis as performed, in the context of $\operatorname{SU}(N)$ bundles, in [27]. Since it is of phenomenological relevance, we restrict our attention here to the rank of the map j, which decides about the appearance of possible exotic matter in the form of extra right-handed electrons. A detailed, but straightforward analysis along the lines of 27] reveals that the possible values for $\mathrm{rk} j$ are 0 and 2 , with 2 being the generic value and 0 corresponding to a specific choice of bundle moduli for V_{2}. We therefore restrict ourselves to the generic maximal value leading indeed to $H^{*}\left(X, V_{2}^{\vee} \otimes L^{-1}\right)=(0,0,0,0)$, as desired. For this generic choice of moduli the number of Higgses is then in the range [51,55$]$ and can be determined in a similar manner, though we do not perform this analysis here.

To conclude, we list again the total spectrum of our example in table 4 .

5. Conclusions

In this paper we have provided the technical tools for the computation of the complete massless spectrum of heterotic string compactifications invoking vector bundles with $\mathrm{U}(N)$ structure groups. Our main results are both of purely mathematical interest and lead, from the physical point of view, to the construction of new quasi-realistic heterotic string compactifications.

Taking the one-loop corrections to the Donaldson-Uhlenbeck-Yau equation derived in [12] seriously, we have proposed a new notion of stability for the loop and nonperturbatively corrected Hermitian Yang-Mills equation. It is the analogue of the concept of Π-stability of B-type D-branes [35] for vector bundles in the $E_{8} \times E_{8}$ heterotic string. While, in the context of importance to us in this publication, this modified stability concept reduces to the familiar one of μ-stability, it would be interesting to investigate the implications of Λ-stability both from the mathematical point of view and with respect to applications in string model building.

In the technical main part of this article we have extended the results of (27] concerning the computation of cohomology groups for vector bundles defined via the spectral cover method. In particular, we have provided the expressions for $H^{i}\left(X, V_{a} \otimes V_{b}\right), H^{i}\left(X, \wedge^{2} V\right)$
and $H^{i}\left(X, \mathbf{S}^{2} V\right)$, where for the latter two our results differ significantly from the ones obtained in [27]. In all these cases the cohomology can be computed from certain line bundles living on the intersection curves of the two spectral cover surfaces involved. Therefore, eventually the technical computation of the massless spectrum boils down to the determination of the cohomologies of line bundles on certain curves. For $\mathrm{U}(4)$ bundles defined via non-split extensions of two $\mathrm{U}(2)$ bundles, we have provided an explicit proof for their μ-stability.

In the remaining, more physically oriented part of this paper we have applied all these techniques to the construction of stringy flipped $\operatorname{SU}(5)$ models as proposed in (14], where the masslessness of the $\mathrm{U}(1)_{X}$ introduced additional constraints on the $\mathrm{SU}(4) \times \mathrm{U}(1)$ bundle involved. Defining the $\mathrm{U}(4)$ bundle via an extension of two $\mathrm{U}(2)$ bundles, we have found what we believe is the first fully consistent, supersymmetric flipped SU(5) string model with just the MSSM matter spectrum, i.e. without any additional vector-like matter. Moreover, this model exhibits precisely one vector-like pair of the desired GUT Higgs fields in the antisymmetric representation of $\operatorname{SU}(5)$ allowing for field theoretic GUT symmetry breaking down to the Standard Model gauge group. The only major shortcoming is the appearance of a large number of electroweak Higgs fields. The common philosophy how to deal with unwanted vector-like pairs would be to carefully analyse their mass matrix and determine whether they can acquire sufficiently large masses as to decouple from the effective lowenergy theory (for recent examples in the heterotic literature see e.g. (48-51). We leave such an analysis for future work, but hasten to stress that the extra Higgs pairs are a consequence of the very specific geometric background and the types of vector bundles employed and may be avoidable in different setups.

As discussed in [14], for the type of flipped $\mathrm{SU}(5)$ vacua studied in this article there are no obvious selection rules forbidding any of the observed Yukawa couplings, whereas potentially problematic dimension four, five and six operators inducing unacceptable proton decay are absent. We consider this latter issue as a clear phenomenological advantage which is known to distinguish flipped $\operatorname{SU}(5)$ from the Georgi-Glashow GUT scenario. Further phenomenological studies would involve the actual computation of the relevant interaction terms including the ones involving the GUT Higgs and which are required for the field theoretic symmetry breaking.

As an alternative to this type of GUT model building, it would be interesting to apply the methods of this paper to the construction of string vacua directly with MSSM gauge group, along the lines of [14]. These vacua are defined by embedding a vector bundle of structure group $\mathrm{SU}(5) \times \mathrm{U}(1)$ into E_{8}, yielding $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_{Y}$ in four dimensions. We plan to come back to these questions in the future.

What we find most interesting in the light of recent discussions concerning the gauge sector of the four-dimensional string landscape (e.g. [52-57, 51]) is the fact that the model presented in this article is just one example of a much larger class of heterotic vacua which, as we recall, are defined on general simply-connected Calabi-Yau manifolds. In particular, they do not rely on highly non-trivial properties of the fundamental group of the internal space or on full solvability of the underlying CFT. We are quite confident that by extending the analysis of this paper to more generic backgrounds and vector bundles, models with
just the MSSM spectrum can be found.

Acknowledgments

We gratefully acknowledge helpful discussions with Volker Braun, Emanuel Diaconescu, Ron Donagi, Florian Gmeiner, Yang-Hui He, Gabriele Honecker, Peter Mayr and useful correspondence with Alexander Degtyarev. R.B. would like to thank the physics department of Rutgers University for hospitality. The work of R.R. was supported in part by DOE grant DE-FG02-96ER40959. The work of T.W. was supported in part by DOE grant DOE-EY-76-02-3071.

A. Proof of stability for rank four bundles V by two generic rank two bundles V_{1}, V_{2}

Let X be a generic elliptically fibered Calabi-Yau manifold as considered in section 2.1. In particular we assume that X admits exactly one section. ${ }^{9}$ Consider a vector bundle V defined by the short exact sequence

$$
\begin{equation*}
0 \rightarrow V_{1} \rightarrow V \rightarrow V_{2} \rightarrow 0, \tag{A.1}
\end{equation*}
$$

where V_{i} are $\mathrm{U}(N)$ or $\mathrm{SU}(N)$ bundles over X that correspond to two different generic irreducible spectral covers. This implies that the restriction of V_{i} to a generic fiber is isomorphic to the sum of degree zero line bundles which are mutually different and that V_{i} is stable with respect to any ample class of the form $J=J_{X}+n \pi^{*} J_{B}$ for sufficiently large n. Here J_{X} and J_{B} denote ample classes on X and B, respectively.

In the sequel, we restrict ourselves to the case that both V_{i} are of rank 2, as in section 4 . Consider a bundle V that corresponds to a non-trivial element in $E x t^{1}\left(V_{2}, V_{1}\right)$ and satisfies $\mu\left(V_{1}\right)<\mu(V)<\mu\left(V_{2}\right)$ with $\mu(V)=0$. We will show that under these assumptions V is a stable bundle with respect to any ample class of the form $J=J_{X}+n \pi^{*} J_{B}$ for sufficiently large n. In particular, we have to show that all torsion free sheaves \mathcal{N} of rank smaller than four which admit an injective map

$$
\mathcal{N} \rightarrow V
$$

obey $\mu(\mathcal{N})<0$. Note that, as discussed for example in [8], it is sufficient to show this statement for all vector bundles of rank smaller than four.

Since the restriction of V to a generic fiber is by construction isomorphic to the sum of mutually different degree zero line bundles, the degree of all subbundles of V along the generic fiber is smaller than or equal to zero. As can be seen by straightforward computation, for subbundles of degree smaller than zero along the generic fiber, large n is sufficient to make their slope negative, hence they cannot destabilize V (15].

Therefore we have to consider only subbundles of degree zero along the generic fiber. The fact that the spectral cover of V is the union of the two irreducible spectral covers of V_{1} and V_{2} implies that these subbundles are of rank two.

[^8]Instead of checking for destabilising rank two subbundles of V, we can check for destabilising sub line bundles of $\bigwedge^{2} V .{ }^{10}$ For this purpose we make use of the fact that $\bigwedge^{2} V$ fits into the exact sequence

It follows that the subbundles \mathcal{N} of $\bigwedge^{2} V$ are either subbundles of $\bigwedge^{2} V_{1}$ or subbundles of Q lifting to $\bigwedge^{2} V$. In the first case these bundles cannot be destabilising since

$$
\mu(\mathcal{N}) \leq \mu\left(\bigwedge^{2} V_{1}\right)<\mu\left(\bigwedge^{2} V\right)
$$

Note that the first inequality is due to fact that the rank of $\bigwedge^{2} V_{1}$ is one and hence the cokernel of $\mathcal{N} \rightarrow \bigwedge^{2} V_{1}$ is a torsion sheaf. It remains to show that subbundles of Q with non-negative slope do not lift to $\bigwedge^{2} V$.

Every line bundle which is a subbundle of Q must either be a subbundle of $V_{1} \otimes V_{2}$ or a subbundle of $\bigwedge^{2} V_{2}$ lifting to Q. However, for generic spectral covers of V_{1} and V_{2}, $V_{1} \otimes V_{2}$ itself corresponds to an irreducible spectral cover and therefore has no subbundles of rank one and degree zero along the fiber, as discussed above.

Turning to the second possibility, we note that it follows from our assumptions that $\bigwedge^{2} V_{2}=\pi^{*} L_{2}$ for some line bundle L_{2} on B. Consider subbundles of $\pi^{*} L_{2}$ of degree zero along the fiber. They are of the form $\pi^{*} D$ for some line bundle D on B. In order for them to destabilize $\bigwedge^{2} V$ they have to lift to $\bigwedge^{2} V$, hence they have to lift to Q.

We will show that this is impossible. As a standard matter of fact, every diagram

can be completed to

for some sheaf F with support on a divisor S on B (see e.g. section III of [59]). It is easy to see that in our specific case F is a line bundle on S. In addition $\pi^{*} D$ lifts to Q if and

[^9]only if Q^{\prime} corresponds to the trivial extension, i.e. $Q^{\prime}=0 \in E x t^{1}\left(\pi^{*} D, V_{1} \otimes V_{2}\right)$ [59]. We can assume that Q is not the trivial extension. There exists a natural map
$$
\operatorname{Ext}^{1}\left(\pi^{*} L_{2}, V_{1} \otimes V_{2}\right) \rightarrow \operatorname{Ext}^{1}\left(\pi^{*} D, V_{1} \otimes V_{2}\right)
$$
and we can complete our proof by showing that this map is an injection.
To do so consider the short exact sequence
\[

$$
\begin{equation*}
0 \rightarrow \pi^{*} D \rightarrow \pi^{*} L_{2} \rightarrow \pi^{*} F \rightarrow 0 \tag{A.5}
\end{equation*}
$$

\]

in (A.4) inducing the long exact sequence

$$
\begin{equation*}
\cdots \rightarrow \operatorname{Ext}^{1}\left(\pi^{*} F, V_{1} \otimes V_{2}\right) \rightarrow \operatorname{Ext}^{1}\left(\pi^{*} L_{2}, V_{1} \otimes V_{2}\right) \rightarrow \operatorname{Ext}^{1}\left(\pi^{*} D, V_{1} \otimes V_{2}\right) \rightarrow \cdots \tag{A.6}
\end{equation*}
$$

We conclude that a sufficient condition for Q^{\prime} not being the trivial extension is the vanishing of $E x t^{1}\left(\pi^{*} F, V_{1} \otimes V_{2}\right)$. Consider

$$
\begin{align*}
\operatorname{Ext}_{X}^{1}\left(\pi^{*} F, V_{1} \otimes V_{2}\right) & =\operatorname{Ext}_{X}^{2}\left(V_{1} \otimes V_{2}, \pi^{*} F\right)^{*} \tag{A.7}\\
& =H^{2}\left(X, \pi^{*} F \otimes V_{1}^{*} \otimes V_{2}^{*}\right)^{*} \tag{A.8}\\
& =H^{2}\left(\pi^{*} S, V_{1}^{*} \otimes V_{2}^{*} \otimes \pi^{*} F\right) \tag{A.9}\\
& =H^{0}\left(\pi^{*} S, V_{1} \otimes V_{2} \otimes \pi^{*} F^{*} \otimes K_{\pi^{*} S}\right) \tag{A.10}\\
& =H^{0}\left(S, \pi_{*}\left(V_{1} \otimes V_{2} \otimes K_{\pi^{*} S}\right) \otimes F^{*}\right)=0, \tag{A.11}
\end{align*}
$$

where we use Serre duality on X and on $\pi^{*} S$. The last equality follows from the fact that $\pi_{*}\left(V_{1} \otimes V_{2}\right)=0$ for generic spectral cover bundles V_{i}.

B. Cohomology of line bundles over del-Pezzo surfaces

In order to determine the cohomology classes of line bundles over general del Pezzo surfaces $d P_{r}, r=0, \ldots, 8$ we proceed as follows. We will first compute the effect of blowing up just a single point on \mathbb{P}_{2} and will then argue that the different blow-ups are independent of each other. This leads directly to the general formula for r blown up points.

Blowing up just a single point results in $d P_{1}$, which is the same as the Hirzebruch surface F_{1}. The latter is a \mathbb{P}_{1} fibration over \mathbb{P}_{1} and we can therefore apply the Leray spectral sequence for this fibration $d P_{1}=F_{1} \xrightarrow{\pi} \mathbb{P}_{1}$. More concretely, consider a line bundle on $d P_{1}$ with first Chern class

$$
\begin{equation*}
c_{1}(L)=a l+b E_{1}=a\left(l-E_{1}\right)+(b+a) E_{1}, \tag{B.1}
\end{equation*}
$$

where $S=E_{1}$ and $\mathcal{E}=l-E_{1}$ are precisely the two \mathbb{P}_{1} s appearing in F_{1}. The intersection form for these 2-cycles is

$$
\begin{equation*}
S \cdot S=-1, \quad S \cdot \mathcal{E}=1, \quad \mathcal{E} \cdot \mathcal{E}=0 \tag{B.2}
\end{equation*}
$$

As has been shown in [27] and can be verified by utilizing for instance the Grothendieck-Riemann-Roch theorem the push-forward of a line bundle onto the \mathbb{P}_{1} described by the divisor S is

$$
\begin{align*}
\pi_{*}(L) & =\mathcal{O}(a \mathcal{E}) \otimes[\mathcal{O} \oplus \mathcal{O}(-\mathcal{E}) \oplus \ldots \oplus \mathcal{O}(-(a+b) \mathcal{E})] \quad \text { for } a+b \geq 0 \tag{B.3}\\
R^{1} \pi_{*}(L) & =\mathcal{O}(a \mathcal{E}) \otimes[\mathcal{O}(\mathcal{E}) \oplus \mathcal{O}(2 \mathcal{E}) \oplus \ldots \oplus \mathcal{O}(-(a+b+1) \mathcal{E})] \quad \text { for } a+b<0
\end{align*}
$$

Applying now Bott's formula for the cohomology classes of line bundles on \mathbb{P}_{1} gives the cohomology classes of the push-forward line bundles on \mathbb{P}_{1},

$$
H^{0}\left(\mathbb{P}_{1}, \pi_{*} L\right)= \begin{cases}\binom{a+2}{2} & \text { for } a \geq 0, b \geq 0 \tag{B.4}\\ \binom{a+2}{2}-\binom{b}{2} & \text { for } a \geq 0,-a \leq b<0 \\ 0 & \text { else }\end{cases}
$$

and

$$
H^{1}\left(\mathbb{P}_{1}, \pi_{*} L\right)= \begin{cases}\binom{b}{2} & \text { for } a \geq 0, b \geq 0 \tag{B.5}\\ -\binom{a+2}{2}+\binom{b}{2} & \text { for } a<0, b>-a \\ 0 & \text { else }\end{cases}
$$

Similarly, for the cohomology classes of the first right derived functor we find

$$
H^{0}\left(\mathbb{P}_{1}, R^{1} \pi_{*} L\right)= \begin{cases}-\binom{a+2}{2}+\binom{b}{2} & \text { for } a \geq 0, b<-a \tag{B.6}\\ \binom{b}{2} & \text { for } a<0, b<0 \\ 0 & \text { else }\end{cases}
$$

and

$$
H^{1}\left(\mathbb{P}_{1}, R^{1} \pi_{*} L\right)= \begin{cases}\binom{a+2}{2} & \text { for } a<0, b<0 \tag{B.7}\\ \binom{+2}{2}-\binom{b}{2} & \text { for } a<0,0<b<-a \\ 0 & \text { else } .\end{cases}
$$

With the help of the Leray spectral sequence it is now straightforward to compute $H^{i}\left(d P_{1}, L\right)$. Using the above decoupling argument for the different blow-ups the final result for general del-Pezzo surfaces $d P_{r}$ can be written in the following suggestive form. Consider the general line bundle on $d P_{r}$ with

$$
\begin{equation*}
c_{1}(L)=a_{0} l+\sum_{i=1}^{\rho} b_{i} E_{i}+\sum_{j=\rho+1}^{r} c_{j} E_{j} \text { with } b_{i}<0 \text { and } c_{j} \geq 0 . \tag{B.8}
\end{equation*}
$$

For $a_{0} \geq 0$ define

$$
\begin{equation*}
A=\binom{a_{0}+2}{2}-\sum_{i=1}^{\rho}\binom{b_{i}}{2} . \tag{B.9}
\end{equation*}
$$

If $A \geq 0$ the cohomology classes of the line bundle are

$$
\begin{equation*}
H^{*}\left(d P_{r}, L\right)=\left(A, \sum_{j=\rho+1}^{r}\binom{c_{j}}{2}, 0\right) \tag{B.10}
\end{equation*}
$$

and for $A<0$ they are

$$
\begin{equation*}
H^{*}\left(d P_{r}, L\right)=\left(0, \sum_{j=\rho+1}^{r}\binom{c_{j}}{2}-A, 0\right) . \tag{B.11}
\end{equation*}
$$

Similarly, if $a_{0}<0$ we define

$$
\begin{equation*}
A=\binom{a_{0}+2}{2}-\sum_{i=1}^{\rho}\binom{c_{j}}{2} . \tag{B.12}
\end{equation*}
$$

If $A \geq 0$ the cohomology classes of the line bundle are

$$
\begin{equation*}
H^{*}\left(d P_{r}, L\right)=\left(0, \sum_{i=1}^{\rho}\binom{b_{i}}{2}, A\right) \tag{B.13}
\end{equation*}
$$

and for $A<0$ they are

$$
\begin{equation*}
H^{*}\left(d P_{r}, L\right)=\left(0, \sum_{i=1}^{\rho}\binom{b_{i}}{2}-A, 0\right) . \tag{B.14}
\end{equation*}
$$

Of course these formulae are consistent with the Riemann-Roch-Hirzebruch formula for the Euler characteristic of these line bundles over $d P_{r}$. In addition we have checked that for the toric del-Pezzo surfaces $d P_{0}, \ldots, d P_{3}$ they are consistent with the cohomology classes derived using toric methods.

C. Koszul sequence for $H^{*}\left(X, V_{a} \otimes V_{b}\right)$

As derived in section (3.2), the cohomology groups of the tensor product of two spectral cover bundles V_{a} and V_{a} are given by

$$
\begin{equation*}
H^{i}\left(X, V_{a} \otimes V_{b}\right)=H^{i-1}\left(C_{a} \cap C_{b},\left.\mathcal{L}\right|_{C_{a} \cap C_{b}}\right) \text { for } i=1,2, \tag{C.1}
\end{equation*}
$$

where $\mathcal{L}=\mathcal{N}_{V_{a}} \otimes \mathcal{N}_{V_{b}} \otimes K_{B}$. Our task is thus to compute the cohomology $H^{*}\left(C_{a} \cap\right.$ $\left.C_{b},\left.\mathcal{L}\right|_{C_{a} \cap C_{b}}\right)$ for a line bundle \mathcal{L} defined on the elliptically fibered three-fold X. This can be accomplished by invoking the Koszul sequence

$$
\begin{equation*}
\text { (I) }\left.\left.\left.0 \rightarrow \mathcal{L} \otimes \mathcal{O}\left(-C_{a}\right)\right|_{C_{b}} \rightarrow \mathcal{L}\right|_{C_{b}} \rightarrow \mathcal{L}\right|_{C_{a} \cap C_{b}} \rightarrow 0 \tag{C.2}
\end{equation*}
$$

The point is that each of the first two objects can again be computed from known objects on X via a Koszul sequence of its own,

$$
\begin{equation*}
\text { (II) }\left.0 \rightarrow \mathcal{L} \otimes \mathcal{O}\left(-C_{b}\right) \rightarrow \mathcal{L} \rightarrow \mathcal{L}\right|_{C_{b}} \rightarrow 0 \tag{C.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.(I I I) \quad 0 \rightarrow \mathcal{L} \otimes \mathcal{O}\left(-C_{a}-C_{b}\right) \rightarrow \mathcal{L} \otimes \mathcal{O}\left(-C_{a}\right) \rightarrow \mathcal{L} \otimes \mathcal{O}\left(-C_{a}\right)\right|_{C_{b}} \rightarrow 0 \tag{C.4}
\end{equation*}
$$

Each of these three short exact sequences induces a long exact sequence in cohomology.
We therefore need as our input data the dimensions of the cohomology groups of the four line bundles on X

$$
\begin{align*}
H^{*}(X, \mathcal{L}) & =H^{*}\left(X, \mathcal{N}_{V_{a}} \otimes \mathcal{N}_{V_{b}} \otimes K_{B}\right) \\
H^{*}\left(X, \mathcal{L} \otimes \mathcal{O}\left(-C_{a}\right)\right) & =H^{*}\left(X, \mathcal{N}_{V_{a}} \otimes \mathcal{N}_{V_{b}} \otimes K_{B} \otimes \mathcal{O}\left(-C_{a}\right)\right), \tag{C.5}\\
H^{*}\left(X, \mathcal{L} \otimes \mathcal{O}\left(-C_{b}\right)\right) & =H^{*}\left(X, \mathcal{N}_{V_{a}} \otimes \mathcal{N}_{V_{b}} \otimes K_{B} \otimes \mathcal{O}\left(-C_{b}\right)\right), \\
H^{*}\left(X, \mathcal{L} \otimes \mathcal{O}\left(-C_{a}-C_{b}\right)\right) & =H^{*}\left(X, \mathcal{N}_{V_{a}} \otimes \mathcal{N}_{V_{b}} \otimes K_{B} \otimes \mathcal{O}\left(-C_{a}-C_{b}\right)\right) .
\end{align*}
$$

These can easily be obtained with the help of the general expressions for the cohomology groups of line bundles on X given in section 3.1 together with appendix B.

References

[1] D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, The heterotic string, Phys. Rev. Lett. 54 (1985) 502.
[2] R. Blumenhagen, M. Cvetič, P. Langacker and G. Shiu, Toward realistic intersecting D-brane models, Ann. Rev. Nucl. Part. Sci. 55 (2005) 71 hep-th/0502005.
[3] R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string compactifications with D-branes, orientifolds and fluxes, hep-th/0610327.
[4] V. Bouchard and R. Donagi, An SU(5) heterotic standard model, Phys. Lett. B 633 (2006) 783 hep-th/0512149.
[5] V. Bouchard, M. Cvetič and R. Donagi, Tri-linear couplings in an heterotic minimal supersymmetric standard model, Nucl. Phys. B 745 (2006) 62 hep-th/0602096.
[6] V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A heterotic standard model, Phys. Lett. B 618 (2005) 252 hep-th/0501070.
[7] V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, The exact MSSM spectrum from string theory, JHEP 05 (2006) 043 hep-th/0512177.
[8] E. Witten, New issues in manifolds of $\mathrm{SU}(3)$ holonomy, Nucl. Phys. B 268 (1986) 79.
[9] R. Donagi, B.A. Ovrut, T. Pantev and D. Waldram, Spectral involutions on rational elliptic surfaces, Adv. Theor. Math. Phys. 5 (2002) 499 math.ag/0008011.
[10] R. Donagi, B.A. Ovrut, T. Pantev and D. Waldram, Standard-model bundles, Adv. Theor. Math. Phys. 5 (2002) 563 math.ag/0008010.
[11] V. Braun, B.A. Ovrut, T. Pantev and R. Reinbacher, Elliptic Calabi-Yau threefolds with $Z(3) \times Z(3)$ Wilson lines, JHEP 12 (2004) 062 hep-th/0410055.
[12] R. Blumenhagen, G. Honecker and T. Weigand, Loop-corrected compactifications of the heterotic string with line bundles, JHEP 06 (2005) 020 hep-th/0504232.
[13] R. Blumenhagen, G. Honecker and T. Weigand, Supersymmetric (non-)abelian bundles in the type-I and SO(32) heterotic string, JHEP 08 (2005) 009 hep-th/0507041.
[14] R. Blumenhagen, S. Moster and T. Weigand, Heterotic GUT and standard model vacua from simply connected Calabi-Yau manifolds, Nucl. Phys. B 751 (2006) 186 hep-th/0603015.
[15] R. Friedman, J. Morgan and E. Witten, Vector bundles and F-theory, Commun. Math. Phys. 187 (1997) 679 hep-th/9701162.
[16] R. Donagi, Principal bundles on elliptic fibrations, Asian J. Math. 1 (1997) 214 alg-geom/9702002.
[17] R. Friedman, J.W. Morgan and E. Witten, Vector bundles over elliptic fibrations, alg-geom/9709029.
[18] S.M. Barr, A new symmetry breaking pattern for $\mathrm{SO}(10)$ and proton decay, Phys. Lett. B 112 (1982) 219
[19] J.P. Derendinger, J.E. Kim and D.V. Nanopoulos, Anti-SU(5), Phys. Lett. B 139 (1984) 170.
[20] I. Antoniadis, J.R. Ellis, J.S. Hagelin and D.V. Nanopoulos, Supersymmetric flipped SU(5) revitalized, Phys. Lett. B 194 (1987) 231.
[21] I. Antoniadis, J.R. Ellis, J.S. Hagelin and D.V. Nanopoulos, The flipped $\mathrm{SU}(5) \times \mathrm{U}(1)$ string model revamped, Phys. Lett. B 231 (1989) 65.
[22] C.-M. Chen, V.E. Mayes and D.V. Nanopoulos, Flipped SU(5) from D-branes with type-IIB fluxes, Phys. Lett. B 633 (2006) 618 hep-th/0511135.
[23] C.-M. Chen, T. Li and D.V. Nanopoulos, Flipped and unflipped $\mathrm{SU}(5)$ as type-IIA flux vacua, Nucl. Phys. B 751 (2006) 260 hep-th/0604107.
[24] M. Cvetič and P. Langacker, New grand unified models with intersecting d6-branes, neutrino masses and flipped $\mathrm{SU}(5)$, hep-th/0607238.
[25] J.E. Kim and B. Kyae, Flipped SU(5) from $Z(12-I)$ orbifold with wilson line, Nucl. Phys. B 770 (2007) 47 hep-th/0608086.
[26] B. Dundee and G.B. Cleaver, Randall-sundrum and flipped SU(5), hep-ph/0609129.
[27] R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, The particle spectrum of heterotic compactifications, JHEP 12 (2004) 054 hep-th/0405014.
[28] R. Donagi, B.A. Ovrut, T. Pantev and D. Waldram, Standard-model bundles on non-simply connected Calabi-Yau threefolds, JHEP 08 (2001) 053 hep-th/0008008.
[29] R. Donagi, A. Lukas, B.A. Ovrut and D. Waldram, Holomorphic vector bundles and non-perturbative vacua in M-theory, JHEP 06 (1999) 034 hep-th/9901009.
[30] D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds - II, Nucl. Phys. B 476 (1996) 437 hep-th/9603161.
[31] B. Andreas and D. Hernandez Ruiperez, $\mathrm{U}(N)$ vector bundles on Calabi-Yau threefolds for string theory compactifications, Adv. Theor. Math. Phys. 9 (2005) 253 hep-th/0410170.
[32] G. Curio, Chiral matter and transitions in heterotic string models, Phys. Lett. B 435 (1998) 39 hep-th/9803224.
[33] R. Blumenhagen, G. Honecker and T. Weigand, Non-abelian brane worlds: the heterotic string story, JHEP 10 (2005) 086 hep-th/0510049.
[34] P. Demazure, Séminaire sur les singularités des surfaces, Ecole Polytechnique (1976-1977).
[35] M.R. Douglas, B. Fiol and C. Romelsberger, Stability and BPS branes, JHEP 09 (2005) 006 hep-th/0002037.
[36] N. Leung, Einstein type metrics and stability on vector bundles, J. Diff. Geom. 45 (1997) 514.
[37] T. Weigand, Compactifications of the heterotic string with unitary bundles, Fortschr. Phys. 11 (2006) 963 .
[38] B. Andreas and G. Curio, Stable bundle extensions on elliptic Calabi-Yau threefolds, math.ag/0611762.
[39] S. Guerra, Spectral construction for associated bundles, to appear.
[40] R. Blumenhagen, G. Honecker and T. Weigand, Non-abelian brane worlds: the open string story, hep-th/0510050.
[41] J. Distler and B.R. Greene, Aspects of $(2,0)$ string compactifications, Nucl. Phys. B 304 (1988) 1 .
[42] R. Tatar and T. Watari, Proton decay, yukawa couplings and underlying gauge symmetry in string theory, Nucl. Phys. B 747 (2006) 212 hep-th/0602238.
[43] G. Honecker, Massive $\mathrm{U}(1)$ s and heterotic five-branes on K3, Nucl. Phys. B 748 (2006) 126 hep-th/0602101.
[44] G. Honecker and M. Trapletti, Merging heterotic orbifolds and K3 compactifications with line bundles, JHEP 01 (2007) 051 hep-th/0612030.
[45] M.B. Green, J.H. Schwarz and P.C. West, Anomaly free chiral theories in six-dimensions, Nucl. Phys. B 254 (1985) 327.
[46] G. Aldazabal, A. Font, L.E. Ibáñez and A.M. Uranga, New branches of string compactifications and their F-theory duals, Nucl. Phys. B 492 (1997) 119 hep-th/9607121.
[47] A. Lukas and K.S. Stelle, Heterotic anomaly cancellation in five dimensions, JHEP 01 (2000) 010 hep-th/9911156.
[48] W. Buchmuller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric standard model from the heterotic string. II, hep-th/0606187.
[49] A.E. Faraggi, E. Manno and C. Timirgaziu, Minimal standard heterotic string models, Eur. Phys. J. C 50 (2007) 701 hep-th/0610118.
[50] O. Lebedev et al., A mini-landscape of exact MSSM spectra in heterotic orbifolds, Phys. Lett. B 645 (2007) 88 hep-th/0611095.
[51] O. Lebedev et al., Low energy supersymmetry from the heterotic landscape, hep-th/0611203.
[52] R. Blumenhagen, F. Gmeiner, G. Honecker, D. Lüst and T. Weigand, The statistics of supersymmetric D-brane models, Nucl. Phys. B 713 (2005) 83 hep-th/0411173.
[53] T.P.T. Dijkstra, L.R. Huiszoon and A.N. Schellekens, Supersymmetric standard model spectra from RCFT orientifolds, Nucl. Phys. B 710 (2005) 3 hep-th/0411129.
[54] F. Gmeiner, R. Blumenhagen, G. Honecker, D. Lüst and T. Weigand, One in a billion: MSSM-like D-brane statistics, JHEP 01 (2006) 004 hep-th/0510170.
[55] K.R. Dienes, Statistics on the heterotic landscape: gauge groups and cosmological constants of four-dimensional heterotic strings, Phys. Rev. D 73 (2006) 106010 hep-th/0602286.
[56] M.R. Douglas and W. Taylor, The landscape of intersecting brane models, JHEP 01 (2007) 031 hep-th/0606109.
[57] P. Anastasopoulos, T.P.T. Dijkstra, E. Kiritsis and A.N. Schellekens, Orientifolds, hypercharge embeddings and the standard model, Nucl. Phys. B 759 (2006) 83 hep-th/0605226.
[58] R. Donagi, R. Reinbacher and S.-T. Yau, Yukawa couplings on quintic threefolds, hep-th/0605203.
[59] S. MacLane, Homology, Springer-Verlag (1994).

[^0]: ${ }^{1}$ For references see e.g. the latest reviews [2] or [3] .

[^1]: ${ }^{2}$ Recent alternative constructions of flipped $\mathrm{SU}(5)$ vacua in various contexts include 22 -26.

[^2]: ${ }^{3}$ In fact, the proof guarantees stability of the bundle with respect to an ample class, i.e. a Kähler class, $J=\epsilon \sigma+J_{B}$ such that the Kähler parameter of the fiber lies in a certain range near the boundary of the Kähler cone, that is for sufficiently small ϵ. Since the value of ϵ is not known, in all models involving the spectral cover constructions it is therefore a subtle issue if the region of stability overlaps with the perturbative regime, which is needed to have control over non-perturbative effects. In all examples which will be relevant for us, the constraints will leave us enough freedom to go to regions of the Kähler cone where ϵ is much smaller than J_{B}.

[^3]: ${ }^{4}$ To recover their expressions, simply set $c_{1}(\zeta)=\eta_{E}-\frac{n}{2} c_{1}(B)$ in the notation of 31.

[^4]: ${ }^{5} \Pi$-stability is meant to be the correct notion of stability for B-type D-branes in the limit $g_{s}=0$ and to all orders in α^{\prime}. By S-duality one is tempted to introduce the corresponding stability for heterotic bundles in the limit $g_{s} \rightarrow \infty, \alpha^{\prime} \rightarrow 0$ with $\alpha^{\prime} g_{s}=$ const.

[^5]: ${ }^{6}$ This was true until the very recent preprint 38], which appeared after our independent analysis on this point had been completed.

[^6]: ${ }^{7}$ We thank Stefano Guerra for pointing out to us that his upcoming work 39 analyses related questions.

[^7]: ${ }^{8}$ For different aspects of this and related constructions see 42. Recent investigations of heterotic K3 compactifications with line bundles are performed in 43, 44. Some previous results on heterotic $\mathrm{U}(N)$ bundles in six and five-dimensional compactifications appear in 45, 46, and 47, respectively.

[^8]: ${ }^{9}$ Otherwise, we assume that $\wedge^{2} V_{2}$ restricted to a generic fiber is trivial.

[^9]: ${ }^{10}$ This is a special case of the general fact that for a rank r subbundle W_{r} of a rank m bundle V_{m} also $\bigwedge^{r} W_{r} \subset \bigwedge^{r} V_{m}$.

